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Preface

This book is appropriate for people who want to get a good overview
of exotic options in practice and are interested in the actual pricing of
them. When dealing with exotic options it is very important to quantify
the risks associated with them and at which stock or interest rate levels
the Greeks change sign. Namely, it is usually the case that the Greeks
of exotic options show much more erratic behaviour than the Greeks of
regular options. This instability of the Greeks forces the trader to choose
different hedging strategies than the standard option model would pre-
scribe. Therefore the risk management of exotic options entails much
more than just obeying the model, which in turn has an impact on the
price. The non-standard risk management of exotic options means that
when pricing an exotic option, one first needs to understand where the
risks lie that affect the hedging strategy and hence the pricing of the par-
ticular exotic option. Once the risks have been mapped and the hedging
strategy has been determined, the actual pricing is often nothing more
than a Monte Carlo process. Moreover, when knowing the risks, the
actual pricing of an exotic option can in some cases even be replicated
by a set of standard options. In other words, the starting point for pricing
exotic options is to have a full awareness of the risks, which in turn has
an impact on how one needs to accurately price an exotic option.

The aim of this book is to give both option practitioners and economics
students and interested individuals the necessary tools to understand
exotic options and a manual that equips the reader to price and risk
manage the most common and complicated exotic options. To achieve
this it is imperative to understand the interaction between the different
Greeks and how this, in combination with any hedging scheme, translates
into a real tangible profit on an exotic option. For that reason, this book
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xii Preface

is written such that for every exotic option the practical implications are
explained and how these affect the price. Knowing this, the necessary
mathematical derivations and tools are explained to give the reader a
full understanding of every aspect of each exotic option. This balance is
incredibly powerful and takes away a lot of the mystique surrounding
exotic options, turning it into useable tools for dealing with exotic options
in practice.

This book discusses each exotic option from four different angles.
First, it makes clear why there is investor demand for a specific exotic
option. Secondly, it explains where the risks lie for each exotic option and
how this affects the actual pricing of the exotic option. Thirdly, it shows
how to best hedge any vega or gamma exposure embedded in the exotic
option. Lastly, for each exotic option the skew exposure is discussed
separately. This is because any skew exposure is typically harder to
quantify, but it has a tremendous impact on almost every exotic option.
For that reason, this book devotes a separate section to skew, Chapter 5,
which explains skew and the reasons for it in depth.
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1

Introduction

Exotic options are options for which payoffs at maturity cannot be repli-
cated by a set of standard options. This is obviously a very broad def-
inition and does not do justice to the full spectrum and complexity of
exotic options. Typically, exotic options have a correlation component.
Which means that their price depends on the correlation between two or
more assets. To understand an exotic option one needs to know above
all where the risks of this particular exotic option lie. In other words,
for which spot price are the gamma and vega largest and at which point
during the term of this option does it have the largest Greeks. Secondly,
one needs to understand the dynamics of the risks. This means that one
needs to know how the risks evolve over time and how these risks behave
for a changing stock or basket price. The reason that one needs to under-
stand the risks of an exotic option before actually pricing it is because
the risks determine how an exotic option should be priced. Once it is
known where the risks lie and the method for pricing it is determined,
one finds that the actual pricing is typically nothing more than a Monte
Carlo method. In other words, the price of an exotic option is generally
based on simulating a large set of paths and subsequently dividing the
sum of the payoffs by the total number of paths generated. The method
for pricing an exotic option is very important as most exotic options can
be priced by using a set of different exotic options and therefore saving
a considerable amount of time. Also, sometimes one needs to conclude
that the best way to price a specific exotic option is by estimating the
price with a series of standard options, as this method better captures
the risk involved with this exotic option. The digital option is a good
example of that and will be discussed in Chapter 9.

Before any exotic option is discussed it is important to fully understand
the interaction between gamma and theta. Although this book assumes
an understanding of all the Greeks and how they interact, the following
two sections give a brief summary of the Greeks and how the profit of
an option depends on one of the Greeks, namely the gamma. A more
detailed discussion of the Greeks and the profit related to them can be
found in An Introduction to Options Trading, F. de Weert.

1
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2
Conventional Options, Forwards

and Greeks1

This section is meant to give a quick run through of all the important
aspects of options and to provide a sufficient theoretical grounding in
regular options. This grounding enables the reader to enter into the more
complex world of exotic options. Readers who already have a good work-
ing knowledge of conventional options, Greeks and forwards can skip
this chapter. Nonetheless, even for more experienced option practition-
ers, this section can serve as a useful look-up guide for formulae of the
different Greeks and more basic option characteristics.

2.1 CALL AND PUT OPTIONS AND FORWARDS

Call and put options on stocks have been traded on organised exchanges
since 1973. However, options have been traded in one form or another
for many more years. The most common types of options are the call
option and the put option. A call option on a stock gives the buyer the
right, but not the obligation, to buy a stock at a pre-specified price and
at or before a pre-specified date. A put option gives the buyer the right,
but not the obligation, to sell the stock at a pre-specified price and
at or before a pre-specified date. The pre-specified price at which the
option holder can buy in the case of a call and sell in the case of a put
is called the strike price. The buyer is said to exercise his option when
he uses his right to buy the underlying share in case of a call option and
when he sells the underlying share in case of a put option. The date at
or up to which the buyer is allowed to exercise his option is called the
maturity date or expiration date. There are two different terms regarding
the timing of the right to exercise an option. They are identified by a
naming convention difference. The first type is the European option
where the option can only be exercised at maturity. The second type of

1 Parts of this chapter have been previously published in de Weert, F. (2006) An Introduction to Options
Trading, John Wiley & Sons Ltd, Chichester. Reproduced with permission.

3



JWBK097-02 JWBK097-DeWeert February 5, 2008 1:23 Char Count= 0

4 Exotic Options Trading

0
K
|

Share price at maturity

P
ay

o
ff

 a
t 

m
at

u
ri

ty

Figure 2.1 Payoff profile at maturity for a call option with strike price K

option is the American option where the option can be exercised at any
time up to and including the expiry date.

Obviously, the buyer of a European call option would only exercise
his right to buy the underlying stock if the share price was higher than
the strike price. In this case, the buyer can buy the share for the pre-
determined strike price by exercising the call and subsequently sell it in
the market at the prevailing price in the market, which is higher than the
strike price and therefore making a profit. The payoff profile of the call
option is shown in Figure 2.1. The buyer of a European put option acts
opposite to the buyer of the call option in the sense that the buyer of a put
option would only exercise his option right, at maturity, if the share price
was below the strike price. In this case the option buyer can first buy
the share in the market at the prevailing market price and subsequently
sell it at the strike price by exercising his put option, earning a profit
as a result. The payoff profile at maturity of a put option is shown in
Figure 2.2.

A forward is different to an option in the sense that the buyer of the
forward is obliged to buy the stock at a pre-specified price and at a
pre-specified date in the future. The pre-specified price of a forward is
chosen in such a way that the price of the forward is zero at inception of
the contract. Therefore, the expected fair value of the stock at a certain
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Figure 2.2 Payoff profile at maturity for a put option with strike price K

maturity date is often referred to as the forward value of a stock or simply
the forward associated with the specific maturity. The payoff profile
at maturity of a forward contract is shown in Figure 2.3. Figure 2.3
makes clear that there is a downside in owning a forward. Whereas
the owner of an option always has a payout at maturity which is larger
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Figure 2.3 Payoff profile at maturity for a forward with strike price K which is equal
to the fair forward value
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than zero and therefore the maximum loss is equal to the premium paid
for the option, the maximum loss on one forward is equal to the strike
price of the forward, which occurs if the share price goes to zero. Since
the definition of a forward prescribes that the contract is worth zero at
inception, the strike price of the forward is equal to the forward value,
which is discussed more elaborately in sub-section 2.4.

2.2 PRICING CALLS AND PUTS

In 1973 Black and Scholes introduced their famous Black–Scholes for-
mula. The Black–Scholes formula makes it possible to price a call or a
put option in terms of the following inputs:� The underlying share price, St ;� The strike price, K ;� The time to maturity, T − t ;� The risk free interest rate associated with the specific term of the

option, r ;� The dividend yield during the term of the option, d;� The volatility of the underlying during the term of the option, σ .

The thought Black and Scholes had behind getting to a specific formula
to price options is both genius and simple. The basic methodology was to
create a risk neutral portfolio consisting of the option one wants to price
and, because of its risk neutrality, the value of this portfolio should be
yielding the risk free interest rate. Establishing the risk neutral portfolio
containing the option one wants to price was again genius but simple,
namely for a call option with a price ct and underlying share price St

ct − ∂ct

∂St
· St (2.1)

and for a put option with price pt

pt − ∂pt

∂St
· St . (2.2)

Respectively, ∂ct
∂St

and ∂pt

∂St
are nothing more than the derivatives of the

call option price with respect to the underlying share price and the put
option price with respect to the underlying share price. In other words,
if, at any time, one holds ∂ct

∂St
number of shares against one call option,

this portfolio is immune to share price movements as the speed at which
the price of the call option changes with any given share price movement
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is exactly ∂ct
∂St

times this share price movement. The same holds for the
put option portfolio. Since both portfolios are immune to share price
movements, if one assumes that all other variables remain unchanged,
both portfolios should exactly yield the risk free interest rate. With this
risk neutral portfolio as a starting point Black and Scholes were able
to derive a pricing formula for both the call and the put option. It has
to be said that the analysis and probability theory used to get to these
pricing formulae are quite heavy. A separate book can be written on the
derivations used to determine the actual pricing formulae. Two famous
theorems in mathematics are of crucial importance to these derivations,
namely Girsanov’s theorem and Ito’s lemma. It is far beyond the scope
of this book to get into the mathematical details, but the interested reader
could use Lamberton and Lapeyre, 1996 as a reference. Although the
derivations of the call and the put price are of no use to working with
options in practice, it is very useful to know the actual pricing formulae
and be able to look them up when necessary. The prices, at time t , of a
European call and put option with strike price K , time to maturity T − t ,
stock price St , interest rate r and volatility σ are given by the following
formulae2:

ct = St N (d1) − K e−r (T −t) N (d2), (2.3)

pt = K e−r (T −t) N (−d2) − St N (−d1). (2.4)

In these formulae, N (x) is the standard Normal distribution, and d1, d2

are defined as

d1 = ln
( St

K

) + (
r + 1

2σ
2
)

(T − t)

σ
√

T − t
, (2.5)

d2 = d1 − σ
√

T − t . (2.6)

Equations 2.3 and 2.4 are incredibly powerful as all the variables that
make up the formulae are known or can be treated as such, except for
the volatility. Although it is not known what the interest rate will be over
the term of the option, it can be estimated quite easily and on top of
that there is a very liquid market for interest rates. Hence, the interest
rate can be treated as known. Therefore, the only uncertainty left in the
pricing of options is the volatility. The fact that the volatility over the
term of the option is not known up front might make it impossible to

2 The dividend yield is assumed to be zero.
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price the option exactly, but it does give the opportunity to start betting
or trading, especially on this variable.

2.3 IMPLIED VOLATILITY

Implied volatility is one of the main concepts in options trading. At first,
the principle of implied volatility might seem quite difficult. However,
it is in fact quite intuitive and simple. Implied volatility is the volatility
implied by the market place. Since options have a value in the market
place, one can derive the volatility implied by this price in the market by
equating the Black–Scholes formula to the price in the market and sub-
sequently solving for the volatility in this equation with one unknown.
Except for the volatility, all variables in the Black–Scholes formula are
known or can be treated as known and hence equating the Black–Scholes
formula for an option to the specific price in the market of that option
results in an equation in one unknown, namely the volatility. Solving
for the volatility value in this equation is called the implied volatility.
Although this is an equation in one unknown, one cannot solve this
equation analytically but it can easily be solved numerically.

2.4 DETERMINING THE STRIKE OF THE FORWARD

Forwards are agreements to buy or sell shares at a future point in time
without having to make a payment up front. Unlike an option, the buyer
of a forward does not have an option at expiry. For example, the buyer
of a 6 months forward in Royal Dutch/Shell commits himself to buying
shares in Royal Dutch/Shell at a pre-agreed price determined by the
forward contract. The natural question is, of course, what should this
pre-agreed price be? Just like Black and Scholes did for the pricing of
an option, the price is determined by how much it will cost to hedge
the forward position. To show this, consider the following example.
An investment bank sells a 2 year forward on Royal Dutch/Shell to an
investor. Suppose that the stock is trading at € 40, the interest rate is
5 % per year and after 1 year Royal Dutch/Shell will pay a dividend of
€ 1. Because the bank sells the forward it commits itself to selling a
Royal Dutch/Shell share in 2 years’ time. The bank will hedge itself by
buying a Royal Dutch/Shell share today. By buying a Royal Dutch/Shell
share the bank pays € 40, over which it will pay interest for the next
2 years. However, since the bank is long a Royal Dutch/Shell share, it
will receive a dividend of € 1 in 1 year’s time. So over the first year the
bank will pay interest over € 40 and over the second year interest over
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€ 39. This means that the price of the forward should be

F = 40 + 40 × 0.05 + 39 × 0.05 − 1 = 42.95. (2.7)

A more general formula for the forward price is

F = Price of underlying + Cost of carry. (2.8)

In the previous example the cost of carry is the interest the bank has to
pay to hold the stock minus the dividend it receives for holding the stock.

2.5 PRICING OF STOCK OPTIONS INCLUDING
DIVIDENDS

When dividends are known to be paid at specific points in time it is easy
to adjust the Black–Scholes formula such that it gives the right option
price. The only change one needs to make is to adjust the stock price. The
reason for this is that a dividend payment will cause the stock price to go
down by exactly the amount of the dividend. So, in order to get the right
option price, one needs to subtract the present value of the dividends
paid during the term of the option from the current stock price, which
can then be plugged into the Black–Scholes formula (see equations 2.3
and 2.4). As an example, consider a 1 year call option on BMW with
a strike price of € 40. Suppose BMW is currently trading at € 40, the
interest rate is 5 %, the stock price volatility is 20 % per annum and there
are two dividends in the next year, one of € 1 after 2 months and another
of € 0.5 after 8 months. It is now possible to calculate the present value
of the dividends and subtract it from the current stock level.

PV of Dividends = e{− 2
12 ×0.05} × 1 + e{− 8

12 ×0.05} × 0.5

= 1.4753. (2.9)

Now the option price can be calculated by plugging into the Black–
Scholes formula (see equation 2.3) a stock price of St = 40 − 1.4753 =
38.5247 and using K = 40, r = 0.05, σ = 0.2 and T − t = 1.

d1 = ln
(

38.5247
40

) + (
0.05 + 1

2 × 0.22
) × 1

0.2 × √
1

= 0.1621 (2.10)

d2 = d1 − 0.2 ×
√

1 = −0.0379. (2.11)

So, the price of the call option will be

ct = 38.5247 × N (0.1621) − 40 × e−0.05 N (−0.0379)

= 3.2934. (2.12)
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2.6 PRICING OPTIONS IN TERMS OF THE FORWARD

Instead of expressing the option price in terms of the current stock price,
interest rate and expected dividend, it is more intuitive to price an option
in terms of the forward, which comprises all these three components.
The easiest way to rewrite the Black–Scholes formula in terms of the
forward is to assume a dividend yield rather than dividends paid out at
discrete points in time. This means that a continuous dividend payout is
assumed. Although this is not what happens in practice, one can calculate
the dividend yield in such a way that the present value of the dividend
payments is equal to St × (

ed(T −t) − 1
)
, where d is the dividend yield.

So, if the dividend yield is assumed to be d and the interest rate is r , the
forward at time t can be expressed as

Ft = St × e{r (T −t)} × e{−d(T −t)}

= St × e{(r−d)(T −t)}. (2.13)

From the above equation it is clear that dividends lower the price of
the forward and interest rates increase it. As shown in the previous sub-
section, one can calculate the price of an option by substituting a stock
price equal to St × e{−d(T −t)} into the Black–Scholes formula. By doing
this one can rearrange the Black–Scholes formula to express the price
of an option in terms of the forward. The price of the call can then be
expressed as

ct = St e
−d(T −t) N (d1) − K e−r (T −t) N (d2)

= e−r (T −t) Ft N (d1) − K e−r (T −t) N (d2). (2.14)

In the same way the price of the put can be expressed as

pt = K e−r (T −t) N (−d2) − e−r (T −t) Ft N (−d1), (2.15)

where d1 and d2 are

d1 =
ln

(
St e−d(T −t)

K

)
+ (

r + 1
2σ

2
)

(T − t)

σ
√

T − t

=
ln

(
e−r (T −t) Ft

K

)
+ (

1
2σ

2
)

(T − t)

σ
√

T − t
(2.16)

d2 = d1 − σ
√

T − t . (2.17)
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2.7 PUT–CALL PARITY

The put–call parity is a very important formula and gives the relation
between the European call and the put price, where the call and the put
have the same strike and maturity, in terms of the share price and the
strike price. The formula is as follows:

ct − pt = St e
−d(T −t) − K e−r (T −t), (2.18)

where d is the dividend yield of the share and r is the risk free interest
rate. One can prove this put–call parity by assuming it does not hold and
show that one can then build a portfolio that leads to a riskless profit at
maturity. For example, when

ct − pt > St e
−d(T −t) − K e−r (T −t), (2.19)

one can prove that the portfolio� sell a call option with strike price K and maturity T − t (income is ct );� buy a put option with strike price K and maturity T − t (income
is −pt );� buy a share (income is −St e−d(T −t))

leads to a riskless profit at maturity for any level of share price at maturity.
Indeed, if ST > K the call will be exercised and therefore the share
within the portfolio is sold at € K and the put expires worthless. The
net position at maturity is therefore zero, but since the generated income
including the financing plus € K is larger than zero, the strategy makes
a riskless profit. Indeed, rewriting equation 2.19 gives[

ct − pt − St e
−d(T −t)] er (T −t) + K > 0. (2.20)

In the same way one can prove that the above portfolio leads to a riskless
profit if ST < K .

If one assumes that

ct − pt < St e
−d(T −t) − K e−r (T −t), (2.21)

one can show that the following portfolio leads to a riskless profit for
any level of share price at maturity:� buy a call option with strike price K and maturity T − t (income

is −ct );� sell a put option with strike price K and maturity T − t (income is pt );� sell a share (income is St e−d(T −t)).
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The put–call parity also signals for which strike the call and the put are
worth the same. As one would expect, the strike for which the put and
the call are worth the same is equal to the forward value of the share.
Equation 2.13 established that the forward is equal to

Ft = St × e{r (T −t)} × e{−d(T −t)}. (2.22)

Therefore, if K = Ft , equation 2.18 shows that the call is worth as much
as the put.

2.8 DELTA

Delta is one of the most important Greeks and instrumental to the Black–
Scholes derivation of the price of an option (see Section 2.2). Delta mea-
sures the sensitivity of an option price to the stock price. Mathematically,
delta, δ, is the derivative of the option price with respect to the stock
price. By taking the actual derivative of equations 2.3 and 2.4, the delta
of European call and put options on a non-dividend paying stock are as
given below. This assumes a call option price of ct , a put option price of
pt and a stock price of St .

δcall, European = ∂ct

∂St
= N (d1) > 0, (2.23)

δput, European = ∂pt

∂St
= −N (−d1) < 0. (2.24)

Equation 2.23 shows that the delta of a call option is between 0 and 1
and of a put option between −1 and 0. Table 2.1 shows for which stock
price the delta reaches its extremes. The deltas of call and put options
with strike K versus the stock price are shown graphically in Figures
2.4 and 2.5 respectively.

Table 2.1 Extreme delta values

Type of Option Delta (δ)

Far in the money call option 1
Far out of the money call option 0
Far in the money put option −1
Far out of the money put option 0
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Figure 2.4 Variation of delta with stock price for a call option

K

 –1

0
Stock price

Delta

Figure 2.5 Variation of delta with stock price for a put option
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2.9 DYNAMIC HEDGING

Black and Scholes showed that a portfolio consisting, at any time, of
one option and minus delta shares is risk neutral and should therefore
yield the risk free interest rate. For a long call option, delta hedging
means selling shares and for a long put put option, minus delta shares
means effectively buying shares as the delta of a put option is negative.
To buy minus delta shares against one option is called delta hedging. In
practice it is not possible to have minus delta shares against one option
at any time. This would mean that one would have to continuously
adjust the number of shares, which is not possible. Therefore, in
practice an option is delta hedged at discrete points in time and is called
dynamic hedging. Although this might seem inconvenient, it is exactly
the reason that traders make money on volatility. This is discussed in
Chapter 3.

2.10 GAMMA

Since delta changes whenever the stock price changes, it is useful to
have a measure that captures this relationship. This measure is called
gamma and gives the sensitivity of delta to a small change in stock
price. Mathematically, gamma is the derivative of delta with respect to
the stock price. Since delta is the derivative of the option price with
respect to the stock price, gamma is the second order derivative of the
option price with respect to the stock price. For European call and put
options, gamma is given by the following formula.

γcall, European = ∂δ

∂St
= ∂2ct

∂(St )2
= N ′(d1)

Stσ
√

T − t
> 0, (2.25)

γput, European = ∂δ

∂St
= ∂2 pt

∂(St )2
= N ′(d1)

Stσ
√

T − t
> 0. (2.26)

where d1 is defined as in equation 2.5 and

N ′(x) = 1√
2π

e− x2

2 . (2.27)

The above formulae show that the gamma of a European call option is
equal to the gamma of a European put option. Respectively, Figures 2.6
and 2.7 indicate the way in which gamma varies with the stock price
and the time to maturity. It is helpful to interpret gamma in terms of
how the delta hedge of an option changes for a change in stock price.
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K Stock price

Gamma

Figure 2.6 Variation of gamma with stock price

If gamma is positive, one needs to sell shares if the stock price goes up
in order to be delta hedged and buy shares if the stock price goes down.
If gamma is negative the reverse holds. Namely, one needs to buy shares
if the stock price goes up in order to be delta hedged and sell shares if
the stock price goes down.

0 Time to maturity

Gamma

Stock price is bigger than strike price 

Stock price is equal to strike price 

Stock price is less than strike price 

Figure 2.7 Variation of gamma with time to maturity
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It is worth noticing that gamma becomes very large if an at the money
option is close to expiring. This is caused by the fact that small stock
price changes heavily affect the probability that this option will expire
in the money. Since, for options close to expiration, |δ| is approximately
equal to this probability,3 small stock price changes heavily affect δ.
This explains why ‘at the money’ options close to maturity have large
gammas.

Gamma is a very important Greek as it enables traders to derive the
profit on an option for any given stock move. The precise way this is
done is discussed in Chapter 3. For exotic options, gamma is usually one
of the distinguishing features as it typically changes sign for different
levels of stock price. Since gamma prescribes how to adjust one’s delta
hedge, it is closely related to the actual profit of an option (see Chapter
3). Hence, for any exotic option, it is extremely important to identify the
levels of stock price where the gamma changes sign.

2.11 VEGA

Vega measures the option price’s sensitivity to changes in volatility, or
rather implied volatility. Mathematically, it is therefore the derivative of
the option price with respect to the implied volatility, σ . The vegas, ν, of
a European call and put option are the same. Therefore, when trading the
volatility of an underlying stock by trading options, it does not matter
whether one trades a call or a put option. In formula form, the vegas, ν,
of a European call and put are expressed as:

νcall, European = ∂ct

∂σ
= 1√

2π
e− d2

1
2 St

√
T − t > 0, (2.28)

νput, European = ∂pt

∂σ
= 1√

2π
e− d2

1
2 St

√
T − t > 0. (2.29)

The vega of a regular option is always positive, meaning that, if the
implied volatility goes up, the option becomes more valuable. For ex-
otic options, it is not always the case that the price goes up whenever
the implied volatility does. An example is an up-and-out call, which is
discussed in Chapter 10 in Section 10.8.

3 The probability that a call option expires in the money is equal to N (d2) and the probability that a put
option expires in the money is equal to N (−d2). This explains why, for call and put options close to maturity,
this probability is very close to |δ|.
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0 K Stock price

Vega

Figure 2.8 Variation of vega with stock price for a European call and put option

Respectively, Figures 2.8 and 2.9 give the variation of vega with re-
spect to the stock price and the variation with respect to the time to
maturity for a European option on a non-dividend paying stock. From
these figures it is clear that vega is largest when the share is trading close
to the strike price and the longer the term of the option the larger the

0 Time to Maturity

Vega

Figure 2.9 Variation of vega with time to maturity for a European call and put option
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vega. So, in comparing gamma and vega it is good to remember that
both these variables are largest when the share is trading close to the
strike price, but when considering the time to maturity, gamma is large
when the term of the option is short whereas vega is largest when the
term of the option is long.

2.12 THETA

Theta measures the option price’s sensitivity to the passage of time
while all other variables remain unchanged. So, it is the rate of change
of the option price with respect to time, and is usually indicated with
the Greek letter θ . It is good to be aware of the impact of theta. Even if
variables like stock price, interest rate and volatility remain unchanged,
the option price will still change. Mathematically, theta is the derivative
of the option price with respect to time. The theta of a European call
option is always negative, which means that as time passes the option
price decreases. The variation of theta with stock price for a European
call option is plotted in Figure 2.10. The variation of theta with time to
maturity for a European call option is plotted in Figure 2.11. The theta
of a European put option is almost always negative. An example of a

K
0

Stock price

Theta

Figure 2.10 Variation of theta with stock price for a European call option, when the
interest rate is strictly positive
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0
Time to maturity

Theta

Out of the money 

In the money 

At the money 

Figure 2.11 Variation of theta with time to maturity for a European call option

European put option with a positive theta could be an ‘in the money’
European put option on a non-dividend paying stock, provided the in-
terest rate is strictly positive. For a far ‘in the money’ put option this can
be seen intuitively. After all, the fact that the upward risk is bounded
is not worth anything for a far in the money put option. This together
with an interest rate advantage ensures that as time passes, a far in the
money European put option becomes more valuable. In Figure 2.12, the
variation of theta with stock price is plotted for a European put option
when the interest rate is strictly positive, and in Figure 2.13 when the
interest rate is zero, which is the same as for the European call option.

2.13 HIGHER ORDER DERIVATIVES LIKE VANNA
AND VOMMA

Vanna is the sensitivity of vega with respect to changes in the underlying
and vomma is the sensitivity of vega with respect to changes in implied
volatility. However, this book will limit the use of these two terms and
other higher order derivatives but will rather specifically describe the
feature at hand. In fact, higher order derivatives become quite meaning-
less for options where the Greeks themselves are already not smooth. In
particular, exotic options have certain trigger points where the Greeks



JWBK097-02 JWBK097-DeWeert February 5, 2008 1:23 Char Count= 0

20 Exotic Options Trading

K

0
Stock price

Theta

Figure 2.12 Variation of theta with stock price for a European put option, when the
interest rate is strictly positive

K
0

Stock price

Theta

Figure 2.13 Variation of theta with stock price for a European call and put option,
when the interest rate is zero
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‘blow up’ and therefore are not smooth at all. Only for variance swaps
(Chapter 23) is it worth mentioning vanna and vomma, but for most ex-
otic options these higher order derivatives show such erratic behaviour
that they will only blur the picture.

2.14 OPTIONS’ INTEREST RATE EXPOSURE IN
TERMS OF FINANCING THE DELTA HEDGE

It is important to remember that an option is exposed to changes in
interest rate. Mathematically this is nothing more than the derivative of
the option price with respect to the interest rate. However, it is much more
important to understand why an option is exposed to the interest rate.
As usual in option theory, the answer can be found in how an option
is hedged. For example, consider a call option. A call option is delta
hedged by selling |δ| shares. By selling short these shares, the trader
receives money which he can put in a savings account and subsequently
earn interest on it. This means that the higher the interest rate the higher
the call price. For the put option it is exactly the opposite. Indeed, a put
option is delta hedged by buying |δ| shares. In order to do this the trader
needs to borrow the funds which buy him |δ| shares. On these funds the
trader incurs financing and therefore benefits from a lower interest rate.
Typically, it is very useful to turn to the financing on the delta hedge in
order to derive the interest rate exposure of an option.4 Doing this also
provides a better understanding of the pricing of options in terms of real
cash flows instead of abstract mathematical formulae.

4 In this approach the premium of the option is not taken into account. For the put option this premium
increases the short interest rate exposure. However, for a call option the premium decreases the long interest rate
exposure. Nonetheless, the net effect for the call option is a long interest rate exposure.
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3
Profit on Gamma and

Relation to Theta

The easiest way to show how the profit of an option can be determined
by the gamma and the movements of the underlying is by means of a
simple example. Suppose Philips is worth € 25 and a three month call
option with a strike of € 25 has a delta of 0.50. Assuming that a trader
buys 1000 of these call options he will need to sell 500 shares to be delta
hedged. If the next day Philips’ stock price goes to € 27 the delta will
increase to, let’s say, 0.70. This means that in order to be delta hedged
the trader will sell an additional 200 shares at € 27. The next day Philips’
stock price goes back down to € 25 and the corresponding delta of the
option goes back to 0.50, which means that the trader will buy back
200 shares at € 25. Just from rebalancing the delta, the trader has made
2 × 200 = € 400. To put this in a general formula; if a stock moves by
y after which the option is delta hedged and the stock then moves back
to its original level, the profit on one option is:

y × (change in δ).

This means that the profit from a move y without moving back to its
original level is

1

2
· y × (change in δ). (3.1)

The change in δ can easily be rewritten in terms of gamma and is nothing
more than y × γ . This means that the profit on a long option after a move
in the underlying of y is equal to

1

2
· γ · y2. (3.2)

Obviously, the fact that the holder of an option makes money whenever
the stock price moves does not come for free. The way the option holder
pays for the right of buying low and selling high is by means of the theta,
the time decay of an option. In other words, the holder of an option needs
to earn back the daily loss in value of the option by taking advantage of

23
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the moves of the underlying. Naturally, the reverse holds for the seller
of an option. In this case the option seller makes money on the theta and
loses it by rebalancing the delta, which effectively means buying high
and selling low.

The relationship between gamma and theta is easy to understand now.
The expected profit on gamma as a result of a move in a small time period
should equal the loss in value of the option of that specific time period.
The expected profit is easy to calculate as the expected move, y, of the
stock in a small period of time, I , equals

y = σ St , (3.3)

where σ has I as the unit of time and is the implied volatility of the
option. This means that the expected profit over a small period of time,
I , is

1

2
γ σ 2S2

t . (3.4)

As this expected profit should be equal to theta over the small time
interval I , the above analysis has arrived at the main formula of option
theory, namely:

1

2
γ σ 2S2

t + θ = 0. (3.5)

When plugging in the formulae for theta and gamma this can also be
shown mathematically. A more detailed proof of the above is given in
Chapter 7 of An Introduction to Options Trading, F. de Weert.
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Delta Cash and Gamma Cash

Before discussing any exotic options it is important to understand the
terminology of delta cash and gamma cash. Luckily these two defini-
tions are easy to understand and very intuitive. Instead of delta and
gamma, traders tend to use delta cash and gamma cash. This is for the
simple reason that traders think in percentage movements rather than
absolute movements. Indeed, both delta and gamma are absolute units
and quantify the change for an absolute movement.

Delta cash, δc, is defined as delta, δ, times the share price St . Mathe-
matically,

δc = δ · St . (4.1)

The profit on delta cash for a percentage move, y %, is now nothing
more than

δc · y %.

Gamma cash, γc, is defined as the change in delta cash for a 1 % move
in the underlying. Now one can derive that

γc = γ · S2
t

100
. (4.2)

Indeed, the change in delta for a 1 % move is

γ · St

100
,

which means that the delta cash after a 1 % move is[
δ + γ

St

100

]
· St .

Therefore the change in delta cash for a 1 % move, i.e. the gamma cash
is [

δ + γ
St

100

]
· St − δSt = γ · S2

t

100
.
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4.1 EXAMPLE: DELTA AND GAMMA CASH

To make the use of delta and gamma cash more intuitive, consider the
following example. A trader buys 100 thousand 1 year € 25 Philips call
options. The delta of each € 25 Philips call option is 0.5. This means that
the trader delta hedges himself by selling 50 thousand Philips shares.
Assume also that the gamma cash of the 100 thousand Philips options
amounts to 50 thousand euros per 1 %. This means that, if the trader is
fully delta hedged initially and Philips’ shares move down by 1 %, the
trader needs to buy € 50 thousand worth of Philips shares to be fully
delta hedged again. Indeed, when the share price moves down by 1 %,
the delta cash of the portfolio comprising of 100 thousand € 25 call
options plus a 50 thousand short share position goes from a delta cash
equal to zero to a delta cash of minus € 50 thousand because of the
gamma cash.
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Skew

Skew is the principle that lower strike options on the same underlying
have higher implied volatilities than options with higher strikes. The
reason for skew can be explained by the observation that if markets go
down they tend to become more volatile and, on very few occasions, the
market actually crashes, in which case it will be incredibly volatile. This
alone does not explain skew as this realised volatility is the same regard-
less of any strike price. The existence of skew is apparently saying that
this increase in volatility has a bigger impact on lower strike options than
on higher strike options. The reason behind this becomes apparent when
thinking in terms of realised gamma losses as a result of rebalancing the
delta of the option in order to be delta hedged. In a downward spiraling
market the gamma on lower strike options increases, which combined
with a higher realised volatility causes the option seller to rebalance his
delta more frequently, resulting in higher losses for the option seller.
Naturally, the option seller of lower strike options wants to get compen-
sated for this and charges the option buyer by assigning a higher implied
volatility to lower strikes. In other words; for any specific maturity, the
lower the strike price of an option on any single underlying the higher
the implied volatility of this option. This principle applies regardless of
the in or out of the moneyness of an option. Whether it is a lower strike
‘in the money’ call option or a lower strike ‘out of the money’ put option
makes no difference from a skew perspective. Indeed, if there were a
difference there would be an arbitrage opportunity.

5.1 REASONS FOR HIGHER REALISED VOLATILITY
IN FALLING MARKETS

An easy way to see why falling markets tend to become more volatile is to
compare volatility to uncertainty. Markets go down because there is more
uncertainty about the future and hence investors are more uncertain about
how to value stocks. A price earnings ratio of 12 can be considered cheap
one day and expensive the next day, just because of a different assumption
on future interest rates. For example, at the end of a rate hike cycle there

27
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is a lot of uncertainty about how to value equity markets as central banks
need to control inflation by increasing rates but can easily overshoot, in
which case the economy can end up in a recession. The reason a central
bank could easily increase interest rates too much is because the effect
of any former rate hikes can only be observed several months later and
therefore results in uncertainty about the right course of action; keep
increasing rates or acknowledge the end of the rate hike cycle.

An added feature of falling markets is that the number of short play-
ers will increase to take advantage of the declining market. This will
significantly increase volatility as short players tend to work with tight
stop losses, resulting in the so-called short squeezes, which cause big
moves on the upside, after which the market typically falls again.

A natural question is of course why cheap valuations of stocks do
not result in volatile markets on the upside. The answer to this question
is that investors are by nature cautious and therefore any adjustment
of too cheap a market will come slowly and is therefore unvolatile. An
investor first wants to see confirmation of his view before he increases his
positions, i.e. buys more stocks. However, for individual stocks where
there is very much uncertainty about their future earnings, the stock
might be volatile on the downside as well as on the upside. Therefore,
individual stocks with a bullish sentiment can have very shallow skews
or even reverse skews. However, the market as a whole will always have
skew, i.e. options on indices will have skew built into them and will
typically have steeper skews than options on stocks.

Yet another argument why stocks are more volatile on the downside
than on the upside is that volatility goes hand in hand with fear of
the investor. Fear in turn comes from investors being scared of losing
money and therefore cutting positions. Since the market as a whole is
long stocks, the fear of the total investor community will be largest when
stock markets go down as this is when the investor community as a whole
loses money and therefore will act in fear and irrationally, which results
in higher volatilities.

5.2 SKEW THROUGH TIME: ‘THE TERM
STRUCTURE OF SKEW’

A natural question is how skew behaves for different maturities. In other
words, is the skew for long term maturities lower or higher than for short
term maturities? The answer is that the skew for any specific stock is
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higher (steeper) for short term maturities than for long term maturities.1

To understand this, one first needs to make the observation that skew
is mainly there because traders are afraid to lose money on downside
strikes in case the market goes down and becomes more volatile. This
means that skew is a result of traders wanting to be compensated on short
downside options because rebalancing the delta on these options more
frequently results in higher losses. Obviously, the larger the gamma the
more imminent the problem. Since short term downside options have
larger gammas when the share price moves down to the lower strikes,
the effect of skew is largest for short term options. Another reason is that
for short term maturities the trader exactly knows whether an option is a
downside option or not. For long term options the trader cannot qualify
whether it is a downside strike, as the trader does not know where the
stock will be trading in, for example, two years’ time. This means that
a two year downside option currently, might be an upside option in two
years’ time if the markets go down. Two years from now is exactly
when the effects of skew for this particular two year option are most
pronounced, hence reducing the effect of skew for longer term options.
Graphically, the term structure of skew looks like Figure 5.1, where the
skew is quantified as the volatility difference per 10 % strike differential.
For example, Figure 5.1 shows that the one year maturity has a skew of
2 volatility points differential between strikes that are 10 % apart.

5.3 SKEW AND ITS EFFECT ON DELTA

The skew curve of a particular stock can have a big impact on a trader’s
delta hedge against any option positions he has. Consider a trader who
owns a 1 year 120 % call on BMW. Suppose the skew curve of BMW for
the 1 year maturity indicates that every 10 % decrease in strike translates
into a 1.5 % increase in implied volatility. This means that, if the 1 year
ATM implied volatility of BMW is 20 %, the 1 year 120 % strike has an
implied volatility of 17 %. Suppose that the trader decides to mark this
120 % call on an implied volatility of 21 %, i.e. higher than the ATM
implied volatility. As a result the implied volatility curve plotted against
strike takes the shape of a smile. Because the trader marks the 120 %
call on a 21 % implied volatility instead of a 17 % implied volatility, his

1 Only in very special situations is the skew for long term maturities higher than for short term maturities.
For example, when a stock is expected to go bankrupt but people know it will not be in the next few months but
any time from 6 months to 2 years.
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Figure 5.1 Skew plotted per time to maturity, clearly showing that the shorter the time
to maturity the steeper the skew. Skew is expressed as the volatility differential per 10 %
difference in strike

delta is larger than it should be and therefore sells more BMW shares
against the 120 % call. This can be seen intuitively by comparing delta
to the probability that an option expires in the money.2 By increasing the
implied volatility the probability that the 120 % call expires in the money
increases and hence the delta increases. This shows that skew and the
way a trader marks his volatility surface have a large impact on a trader’s
delta hedge. A good question is whether one would expect a downward
sloping implied volatility curve per maturity or a smile curve, i.e. both
higher and lower strikes than ATM have a larger implied volatility than
the ATM implied volatility. The answer to this question is that it depends
on the asset class. For options on equities one can say that the implied
volatility curve per maturity is always downward sloping, except for
very special situations. This can be seen by looking at the way a trader
delta hedges his options for upside strikes and by comparing the delta
to the probability that the option expires in the money.

2 The probability that a call option expires in the money is N (d2) and the delta of a call option is N (d1),
where d2 = d1 − σ

√
T − t . Since d1 is also a function of σ it is the case that for upside strikes a higher σ results

in a greater d2 and therefore a higher probability that the call expires in the money. This is also what one would
expect intuitively.
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Assuming that a trader marks his upside strikes on a higher implied
volatility than the ATM implied volatility means that he sells more shares
against these long upside calls than when the skew curve has a downward
sloping shape. This also means that, considering that the ATM implied
volatility for this particular maturity is a trader’s best estimate for what
the stock will realise (volatility wise) during the term of the option,
the trader assigns too high a probability to the option expiring in the
money and therefore hedges the upside call on too high a delta. To make
matters worse, the trader will continue to sell too many shares with the
share price going up. However, with the share price going up the stock
is likely to realise even less, making the probability and therefore the
proper delta of this option even lower. In other words, by marking upside
strikes on a higher implied volatility than the ATM implied volatility,
the trader sells too many shares and, especially when the share price
moves up, the trader not only loses money on the extra shares he sold,
he also continues to sell too many shares. It is these dynamics that force
a trader to mark his volatility surface per maturity with a skew that has
a downward sloping shape rather than a smile.

There is one more parameter that is used to mark an implied volatility
surface, namely the curvature. Indeed, it is the case that for very high
strikes the implied volatility does not decrease any longer but flattens out,
which can be marked in by using a curvature measure. At the same time
this curvature parameter ensures that very low strikes have an even higher
implied volatility than the skew parameter indicates. This is exactly what
a trader would want, as very low strikes have very little premium and
therefore sellers want to get properly compensated, which means that the
skew parameter alone will not be enough and the curvature parameter
will ensure these low strikes are marked on a larger implied volatility. In
Figure 5.2 the implied volatility is plotted against strike, clearly showing
the effects of both the skew parameter and the curvature parameter on
the shape of the implied volatility surface for a specific maturity against
strike price.

Without confusing matters too much, even in equity there is a small
element of a smile shape for the implied volatility per strike. However,
this is almost negligible as it is only concerned with upside strikes for
which the options have a very small premium. Obviously, nobody will
sell an option for nothing and therefore a very high strike might get
an incredibly large implied volatility for the simple reason that a small
premium already translates into a large implied volatility.
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Figure 5.2 Implied volatility plotted against strike price for a specific maturity, pointing
out how the skew and the curvature parameters affect the implied volatility surface to
best fit the real world

5.4 SKEW IN FX VERSUS SKEW IN EQUITY: ‘SMILE
VERSUS DOWNWARD SLOPING’

In sub-section 5.3 it was shown that the implied volatility plotted against
strike has a downward sloping shape per maturity in the equity asset
class. In Foreign exchange (FX), the implied volatility plotted against
strike takes the shape of a smile for any specific maturity. In other words,
the implied volatility for options on an exchange rate is higher for both
lower strikes and higher strikes than ‘at the money’. This is because
in FX either currency of the exchange rate can collapse. For example,
taking the exchange rate of EUR versus USD, which is currently trading
at € 0.8 per $ 1, it is clear that if the exchange rate goes to € 0.4 per $ 1,
the dollar is crashing against the euro and an exchange rate of € 1.2 per
$ 1 means that the euro is crashing against the dollar. In both scenarios
one can expect more uncertainty and therefore more volatility. For this
reason a trader would charge a higher implied volatility for both the 0.4
strike and the 1.2 strike as it is the risk of crashing that causes traders to
charge higher implied volatilities. Figure 5.3 plots the implied volatil-
ity against the strike for the EUR/USD exchange rate, clearly showing
the ‘smile’ shape of the implied volatility surface in FX. Obviously,
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Figure 5.3 Implied volatility plotted against strike price for the EUR/USD exchange
rate, pointing out the ‘smile’ shape of the volatility surface in FX

the extent of ‘skew’ in either direction depends on which currency is
considered to be more stable. For example, both the euro and the dollar
are considered stable currencies and therefore the ‘skew’ for both lower
and higher strikes is very similar. However, the magnitude of ‘skew’ on
an exchange rate between a stable currency and an unstable currency
can be very different for downside strikes than for upside strikes. For
example, consider the exchange rate between the euro and the Brazilian
real (BRL), which is currently trading at BRL 2.6 per € 1. In this case
it is very unlikely to see a crash of the euro versus the BRL, whereas a
crash of the BRL versus the euro is highly possible. In other words, a
trader would charge a much higher implied volatility for an FX option
with a strike of BRL 3.6 per € 1 than for an FX option of BRL 1.6 per
€ 1. The reason being that an exchange rate of BRL 3.6 per € 1 means
a large devaluation of the Brazilian real, which will be accompanied
with large volatility, whereas an exchange rate of BRL 1.6 per € 1 is a
large devaluation of the euro and will most likely be accompanied with a
decrease in volatility as it means that the BRL is becoming more stable.
Figure 5.4 plots the implied volatility against strike for the BRL/EUR
exchange rate, and clearly shows that the skew is much more prominent
for higher strikes, i.e. a devaluation of the BRL, than for lower strikes. It



JWBK097-05 JWBK097-DeWeert February 5, 2008 1:43 Char Count= 0

34 Exotic Options Trading

 1.6 2.6 3.6
Strike BRL/EUR

Im
p

lie
d

 v
o

la
ti

lit
y

Figure 5.4 Implied volatility plotted against strike price for the BRL/EUR exchange
rate, pointing out the biased ‘smile’ shape of the implied volatility surface between a
stable and an unstable currency

could even be argued that the implied volatility should initially go down
for slightly lower strikes than ‘at the money’, after which it picks up for
very low strikes.

5.5 PRICING OPTIONS USING THE SKEW CURVE

When pricing options it is important to take the skew curve into account.
That is to say, pricing an option means pricing it off the full volatility
surface. Therefore, if one prices, for example, a downside option, one
would look at the volatility curve and price it on a higher implied volatil-
ity than an ‘at the money’ option. For a plain vanilla downside option
the effect of skew on the price is straightforward. However, for a large
class of exotic options the effect of skew on the price is not that obvious.
Hence, each section discusses separately the effect of skew on the price
of the exotic option in question.
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6

Simple Option Strategies1

Before really delving into everything that has to do with exotic options,
it is good to be familiar with some simple but commonly used option
strategies. It is also a prerequisite to know the jargon of the different
option strategies when dealing with exotic options. Especially because
simple option strategies are often used to hedge the risks of an exotic
option.

The most popular option strategies amongst investors usually involve
more than just buying or selling an option outright. In this chapter several
different option strategies are explained. Why investors would execute
these option strategies is discussed from a break-even point of view.
As a bonus, some of the following option strategies have an embedded
skew position and can therefore serve as a simple introduction to more
complex skew positions.

6.1 CALL SPREAD

One of the most popular strategies is the call spread. A call spread
involves nothing more than two calls, one with a low strike and another
one with a higher strike. An investor is said to be buying the call spread
if he buys the lower strike and sells the higher strike. Selling the call
spread means selling the lower strike and buying the higher one. Buying
the call spread is called a bullish strategy because the investor benefits
if the underlying increases in value. However, the investor’s profits are
capped because he has sold another call with a higher strike to fund
his bullish view on the stock. As an example consider an investor who
buys an at the money call on BMW and partially funds this by selling
a 120 % call on BMW. In this case the investor profits from an increase
in BMW’s share price up to the point where the share price has reached

1 Parts of this chapter have been previously published in de Weert, F. (2006) An Introduction to Options
Trading, John Wiley & Sons Ltd, Chichester. Reproduced with permission.
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Figure 6.1 Payoff profile at maturity for an ATM/120 % call spread on BMW

120 % of its initial value. Every percentage gain over 20 % does not
make the investor any money, hence his profits are capped. When the
two payoff profiles of a long ATM call option and a short 120 % call
option are combined, one gets the payoff graph in Figure 6.1.

From a skew perspective it is interesting to look at the call spread
position from the trader’s point of view. The trader, who is selling the
100 % call and buying the 120 % call, is short skew as he sells a lower
strike option with a higher implied volatility than the higher strike option
which he buys. The trader would therefore benefit if the skew goes down.
To put it differently, the trader would make money if the skew becomes
more shallow. This can happen when

� The implied volatility of the 100 % call goes down and the implied
volatility of the 120 % call stays the same. This results in a smaller
difference in implied volatility between the 100 % call and the 120 %
call and hence the skew is more shallow.� The implied volatility of the 120 % goes up and the implied volatility of
the 100 % call stays the same. This means that the implied volatility
of the 120 %, which the trader is long, moves closer to the implied
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volatility of the 100 % call. The balance is that the skew becomes
more shallow and the trader makes money as a result.� The implied volatility of the 100 % call goes down and the implied
volatility of the 120 % call goes up. Again, the result is that the skew
is less steep, which results in a profit to the trader.

The above shows the possibility for the trader to make money as a
result of skew becoming less steep. Obviously, one could think of even
more scenarios in which the trader benefits from a more shallow skew.
For example, when both the implied volatility of the 100 % call and
the implied volatility of the 120 % go down, but the implied volatility
of the 100 % call goes down more than the implied volatility of the
120 % call. However, this scenario is not as clear cut as the above three
scenarios. For example, if the vega of the 120 % call is larger than the
vega of the 100 % call, a parallel downward shift in implied volatility
for all strikes has a larger negative effect on the trader’s long 120 % call
position than the positive counter effect on the trader’s short 100 % call
position. This means that, even if the implied volatility of the 100 %
call goes down more than the implied volatility of the 120 % call it
might not be enough to offset the negative effect because of the long
vega loss.

6.2 PUT SPREAD

A put spread is opposite to a call spread in the sense that, when an investor
buys a put spread he is executing a bearish strategy, whereas buying a
call spread is a bullish strategy. Buying a put spread means buying a
higher strike put and selling a lower strike put. Since a put with a higher
strike is always more expensive than a put with a lower strike and the
same maturity, the investor has to pay a premium to put this strategy on.
When an investor buys a put spread he partially funds his bearish view on
the underlying stock by selling a lower strike put. However, by partially
funding his bearish view he is also limiting the profits of his strategy,
because the investor only benefits from the stock going down, up to the
strike of the downside put. As an example consider an investor who buys
an at the money put on Volkswagen (VW) and partially funds this by
selling an 80 % put on VW. In this case the investor does profit from a
decline in VW’s share price up to the point where it has reached 80 % of
its initial value. If the share price drops below 80 % of its initial value,
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Figure 6.2 Payoff profile at maturity for an ATM/80 % put spread on Volkswagen

the investor does not benefit any longer. Again, when the two payoff
profiles of a long at the money put and a short 80 % put are combined,
one gets the payoff graph in Figure 6.2. It is important to understand
that the payoff in Figure 6.2 is not the investor’s profit because he would
have paid an initial premium to put this strategy on. So, if this strategy
costs him 2 % of the initial share price, the investor only starts to make
money if the share price drops below 98 % of the initial share price.
However, had he just bought an at the money put it would have cost
him considerably more, for example 5 %, and therefore the share price
would have to drop below 95 % of the initial share price before the
investor would start to make money. Obviously, the put outright would
not limit his upside potential to 18 % but in theory to 95 % if the share
price went to zero.

Consider the trader who is selling the 100 %/80 % put spread. In this
case the trader is long the 80 % put and short the 100 % put. Since he
is long the lower strike option and short the higher strike option, the
trader is long skew. This means that the trader would benefit from a
steepening skew. In other words, if the difference in implied volatility
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for a 10 % change in strike goes up, the trader, who is long skew, makes a
profit.2

6.3 COLLAR

The collar or the risk reversal is used to give gearing to a certain view on
the underlying rather than limiting the upside potential of that strategy,
as for the call or put spread. A collar consists of a call with a higher
strike and a put with a lower strike. If an investor is very bullish on a
stock and he thinks the downside for the stock is very limited, he could
buy an upside call and sell a downside put to partially fund this strategy.
However, the investor might not be limiting his upside potential when the
stock goes up, but by selling the put he does expose himself to the stock
going down. So the investor is said to be gearing his view because he
can actually lose more than his investment when the stock ends up lower
than the strike of the put. If an investor is bearish on a stock he could buy
a downside put and sell an upside call to fund his view partially or in full,
but he therefore exposes himself to the stock price going up. Whether an
investor is paying or receiving money to put on a risk reversal strategy
depends on the forward and the skew. It is therefore ambiguous to talk
about buying or selling a risk reversal.

Consider an investor who is very bullish on BMW’s share price and
therefore wants to buy a 1 year 110 % call. He also thinks that if the share
price goes down it will not go down more than 10 % in the coming year.
Therefore he wants to fund his 110 % call by selling a 90 % put with
the same maturity. By combining the payoff profile of a long 110 % call
with a short 90 % put one would get the graph in Figure 6.3. Again, it is
important to remember that Figure 6.3 does not show the profit profile
of the investor. The profit depends on how much the investor received or
paid for putting this 90 %/110 % collar on in the first place. If BMW’s
dividend yield is higher than the risk free interest rate, the investor will
most definitely have received money for this strategy. This is because,
if the dividend yield is higher than the risk free interest rate, the 1 year
forward is less than 100 % of the initial share price, which makes the

2 Depending on the net vega position of the put spread, a steepening in skew does not always result in a profit
to the trader. This was discussed in sub-section 6.1. A steepening of the skew as a result of the 80 % implied
volatility going up and the 100 % staying the same or of the 100 % going down and the 80 % implied volatility
remaining equal or lastly of the 80 % implied volatility going up and the 100 % volatility going down always
makes the trader a profit.
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Figure 6.3 Payoff profile at maturity for a 90 %/110 % collar on BMW

1 year 90 % put more valuable than the 1 year 110 % call. On top of that
the skew makes the 90 % put even more valuable and the 110 % call less
valuable.

Another feature of the collar is that it has a relatively high delta,
because, if a trader buys a put, he needs to buy shares to hedge himself
and if the trader also sells a call, he needs to buy even more shares in
order to be delta hedged. Because of this high delta the collar can also
be used to express a dividend view. If a trader thinks BMW is likely
to increase its dividends he quite happily takes the other side of the
investor’s strategy to buy the put and sell the call. Because, if BMW
does increase its dividends, the forward should have been lower than the
forward with the current dividends and the put will therefore increase in
value and the call will decrease in value. The trader is also exposed to
changes in skew as he is long the lower strike option and short the higher
strike option. He is therefore long skew and benefits if the skew goes up.

6.4 STRADDLE

The straddle is a very popular strategy for investors who think the
underlying stock will move away from its current level but do not know
whether it will be up or down. A straddle consists of a call option and
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a put option with the same strike and same maturity. Since buying a
straddle means buying both a call and a put option, the underlying needs
to move away from the strike price considerably for the strategy to make
money. For that very same reason selling a one year ATM straddle is a
very attractive strategy for investors who think the underlying will move
sideways for the coming year. The investor will take in the premium
of the straddle and will most likely have to pay very little at maturity
because the stock will not have moved away much from current levels.
So, on either the put or the call, the payout will be nothing and on the
other one it will be very little.

As an example, consider an investor who knows that TomTom, the
maker of car navigation systems, is due to come out with a statement
which will be a real share mover. However, the investor does not know
whether it will affect the share price positively or negatively. For that
reason he decides to buy a 6 months at the money straddle on TomTom.
Combining the two payoff profiles of a long at the money call and a
long at the money put, one will get Figure 6.4. To show the difference
between the payoff of buying an ATM straddle on TomTom and the
profit of buying this straddle, suppose the investor paid € 3 for the ATM
straddle on TomTom and the share price is currently trading at € 20. The

ATM

0
TomTom price

Payoff

Figure 6.4 Payoff profile at maturity for a long ATM straddle on TomTom
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Figure 6.5 Payoff profile at maturity for a long ATM straddle on TomTom

profit profile at maturity of buying an ATM straddle on TomTom would
look like Figure 6.5.

The straddle is the perfect tool to play the volatility. Since a straddle
consists of both a call and a put, it has a very large vega exposure. On top
of that it has very little dividend exposure as the deltas of the call and the
put offset each other. Therefore, a trader who believes that the volatility
will go up in the near future should buy a straddle and subsequently delta
hedge it. A trader who believes that the volatility will go down should
sell a straddle and delta hedge it rigorously.

6.5 STRANGLE

The strangle is very similar to the straddle with the difference that the
call and the put do not have the same strike. So, a strangle consists of a
call with a higher strike and a put with a lower strike. Therefore, like the
straddle, the strangle is also for investors who think that the underlying
share will move away from current levels. However, an investor might
prefer a 90 %/110 % strangle to an ATM straddle because he thinks that
the share price will move much more than 10 % from current levels but
he wants to minimize his loss in case the share price does not move at
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Figure 6.6 Profit profile at maturity for a long 90 %/110 % strangle on TomTom

all. By using the strangle to support his view, his initial investment is
much less than when buying the ATM straddle. If the share does move
much more than 10 % from current levels he profits almost as much as
with an ATM straddle, but he has paid much less than in the case of the
straddle, which makes his strategy less risky. As an example, consider
an investor who thinks that TomTom’s share price will either move away
from its current € 20 level by at least 20 % in the next six months or not
do anything at all. Instead of buying an at the money straddle where the
initial investment is large and in case of a big move the profit at maturity
is large as well, the investor decides to buy a 6 months 90 %/110 %
strangle where the initial investment is small and in case of a big move
the profit is almost as large as for the straddle. The payoff profile at
maturity for this strategy is shown in Figure 6.6.

To see that this strategy is less risky than buying a six months ATM
straddle, suppose the investor paid € 1.50 for the strangle and as per the
example in section 6.4 he would have to pay € 3 for the ATM straddle.
If the share price were to move down by 20 %, TomTom’s share price
would be € 16. The strangle would therefore make a profit of € 0.50
(the strike of the 90 % put is € 18 and therefore makes € 2 on this put)
and the straddle would make a profit of € 1. The two different profit
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Figure 6.7 Profit profiles at maturity for a long 90 %/110 % strangle and an ATM
straddle on TomTom

profiles of the straddle and strangle are shown in Figure 6.7. Figure 6.7
clearly shows that the strangle is a less risky strategy but the potential
profit is less as well. However, for very big moves the difference in
profit between the straddle and the strangle is very small in percentage
terms.
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7

Monte Carlo Processes

Most exotic options are ultimately priced with the aid of a Monte Carlo
process. However, before using a Monte Carlo process one first needs
to establish the inputs for this Monte Carlo process. These inputs can
only be determined when understanding the exact risks and behaviour
of the Greeks. Therefore, when pricing exotic options it is much more
important to be aware of the risks than to fully understand the actual
pricing of it through a Monte Carlo process. Nonetheless, it is important
to have an understanding and intuition of the workings of a Monte Carlo
process. This section is looking to provide exactly this understanding
without discussing the different mathematical models that are concerned
with generating the paths of a Monte Carlo process.

7.1 MONTE CARLO PROCESS PRINCIPLE

The principle of a Monte Carlo process is to generate a large but finite
number of paths, aggregate the option payoffs associated with each path
and subsequently divide the sum by the number of simulated paths. These
paths are generated according to the process by which the stock or other
underlying is assumed to move. For example, under Black–Scholes,
stock price movements are assumed to behave like a Brownian motion.
This means that the paths would be generated by a computer program
using a standard normal distribution, where at any point in time the next
move is distributed as a standard normal distribution with the implied
volatility as standard deviation of this normal distribution. Armed with
a large set of paths one can estimate the price of an option by adding
the option payoffs corresponding to each respective path and dividing
it by the number of simulated paths. In other words, let ωi be the path
corresponding to the i-th simulation and let f (ωi ) be the corresponding
option payoff, the option price obtained through Monte Carlo simulation
is

1

N

N∑
i=1

f (ωi ). (7.1)

45
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Although formula 7.1 comes across as a very rough estimate of the
specific option price, the Central Limit Theorem says that the error in
this estimation converges to zero with a speed of

1√
N

. (7.2)

This means that a large enough number of paths ensures that an option
price obtained with Monte Carlo simulation is very close to the fair value
of this option.

7.2 BINOMIAL TREE VERSUS MONTE
CARLO PROCESS

A binomial tree is another popular iterative method to calculate the price
of an option. The difference between a binomial tree and a Monte Carlo
process is that the binomial tree requires a discrete (not continuous in
time) probability measure and it is therefore a less accurate approxima-
tion of the real movement of the underlying. On the other hand, because
it has a finite number of observations, a real expectation can be calcu-
lated as the probabilities do add up to 1, whereas a Monte Carlo process
only converges for a large enough number of paths to the expected value
and therefore the price of the option. Since, for a continuous process,
the probability of one specific path occurring is zero, it is impossible
for a Monte Carlo process to calculate an expectation directly. However,
for a large enough number of paths, one can expect the proportion of
paths within a certain range to be equal to the probability of that stock
price falling in that range prescribed by the process according to which
the stock is supposed to move. Although the binomial tree and a Monte
Carlo process bear some significant differences, the reason that the bi-
nomial tree is discussed in this section is because it is the easiest way to
show how a Monte Carlo process derives the value of, for example, an
American option where the possibility of early exercising should also
be taken into account in the price.

7.3 BINOMIAL TREE EXAMPLE

Consider the binomial tree in Figure 7.1 on BMW’s share price.
Figure 7.1 depicts a 2 year binomial tree where with a 50 % chance
the stock price is multiplied by 1.1 the following year and with another
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Figure 7.1 Binomial tree with 50 % chance of stock price being multiplied by 1.1 and
50 % chance of being multiplied by 1

1.1 and a dividend of € 2 in the second year

50 % chance the stock price is divided by 1.1 the following year. There is
one catch in this binomial tree because there is a € 2 dividend in the sec-
ond year and therefore the stock prices in the second year are € 2 lower
than expected. Knowing the 2 year stock movement according to the bi-
nomial tree in Figure 7.1 it is easy to price a 2 year € 97 European call.
Indeed, there are only two paths where the € 97 European call has a pay-
out. Namely when BMW’s stock price is € 98 after two years and when
it is € 119, both of which have a 25 % chance of occurring. Assuming
that the interest rate is zero, the price of the 2 year € 97 European call is

0.25 × (98 − 97) + 0.25 × (119 − 97) = € 5.75

When pricing a two year € 97 American call, one also has to check
at every point in the tree whether it is optimal to early exercise the
American call option. For the tree in Figure 7.1, the only point that
needs to be checked is the € 110 stock price after 1 year. In other words,
one has to look at the part of the tree in Figure 7.2 to determine whether
the option of early exercising has an impact on the price of the American
option.The payout on the € 97 American call is € 13 if one were to
exercise after 1 year. Assuming that the interest rate is zero and that
BMW’s share price is trading at € 110 after one year, the present value
of the expected value of the € 97 American call in the second year is

0.5 × (119 − 97) + 0.5 × (100 − 97) = € 12.5
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Figure 7.2 Second year of the binomial tree from Figure 7.1 zoomed in to the ‘up’ path

This means that it is optimal to exercise the 2 year € 97 American call
on BMW after the first year if BMW is then trading at € 110. The price
of the American call can therefore be established as

0.5 × (110 − 97) + 0.5 × 0 = € 6.5.

7.4 THE WORKINGS OF THE MONTE
CARLO PROCESS

Knowing that, for a large enough number of paths, the percentage of
paths falling within a certain range converges to the probability of that
range occurring according to the process by which the stock is supposed
to move, a Monte Carlo simulation can effectively be seen as an ex-
pectation. Therefore, determining the fair option value through a Monte
Carlo process is ultimately the same idea as calculating the expected
value of an option from a binomial tree. For a Monte Carlo process, a
computer program randomly generates paths for which the associated
option payoffs are aggregated and subsequently divide by the simulated
number of paths to get the fair option value. On the other hand, a bino-
mial tree reduces the stock price movements to a finite number of paths
and hence compromises the accuracy of the stock price movements, but
the expected value is real as the probabilities do add up to 1. In other
words, increasing the number of paths of a Monte Carlo process means
that the outcome resembles an expected value more closely and there-
fore the Monte Carlo estimation is closer to the fair value of the option,
whereas increasing the number of paths of a binomial tree means that the
binomial tree more closely resembles the actual stock price movements
and hence the expected value of the option is closer to the fair value of
the option.
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Chooser Option

Before proceeding with discussing real exotic options, the chooser op-
tion is an interesting one to discuss. The chooser option is often char-
acterised as an exotic option because it comes across as an option that
is difficult to price. However, closer investigation of the chooser option
shows that it can actually be priced as a series of regular options.

The buyer of a chooser option has the right to decide, up to a certain
date, whether it should be a call option or a put option. The strikes of
either the put or the call can be the same but need not necessarily be the
same. When the chooser option specifies that the strikes are the same,
the chooser option is referred to as a simple chooser. When the strikes
or even the expiries are not the same the chooser is referred to as a
complex chooser. The following sub-section discusses an example of
how a simple chooser can be priced.

8.1 PRICING EXAMPLE: SIMPLE CHOOSER OPTION

Consider a European chooser option on BMW with a maturity of 2 years,
a strike price of € 40 and the buyer has 2 months to choose whether he
wants the chooser to be a € 40 call or a € 40 put, see Table 8.1. In
other words, the fact that the chooser option is European means that,
once the buyer has chosen whether the chooser should be a put or a call,
the chosen option is a European style option and can therefore only be
exercised at maturity. The European property has therefore nothing to do
with the timing of the buyer’s choose date. Namely, the buyer can pick
any day up to 2 months to decide whether the chooser should be a call
or a put. However, the buyer would always pick the last possible date to
decide whether the chooser should be a put or a call as there is no benefit
in choosing earlier. Suppose that the 2 year forward is € 40 when BMW
is worth € 38 after 2 months, i.e. the 22 months forward in 2 months is
€ 40 if BMW’s share price is equal to € 38 in two months’ time. Armed
with this assumption the 2 year chooser option on BMW can be priced
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Table 8.1 Terms of the chooser option

Underlying BMW
Option style European
Option type Chooser
Maturity 2 years
Choose date Up to two months
Strike € 40

as follows by the trader. In other words, if the trader buys the following
position he is fully hedged against the short chooser option.� Buy a 2 year € 40 strike European call plus� Buy a 2 months € 38 strike European put.

To see that the sum of the above two options prices the chooser option
on BMW accurately, consider the following two scenarios

1. After two months BMW’s share price is above € 38.
Since the 2 months put expires worthless, the trader is just left with
a € 40 call option expiring in 22 months. This mirrors exactly the
position as a result of the choice of the buyer of the chooser option.
Indeed, the buyer of the chooser option decides to turn the chooser
option into a € 40 call option instead of a put option since the 22
months forward is higher than € 40 and therefore the call is worth
more than the put.

2. After two months BMW’s share price is below € 38.
In this case the put expires ‘in the money’ and therefore the trader
exercises the € 38 put within his hedging portfolio, which results in
a short share position for the trader. This means that the trader is
left with a short share position combined with a long call position.
Put–call parity means that a short share position combined with a
long call position is equal to a long put position. Again, this mirrors
exactly the short chooser position. Indeed, the buyer of the chooser
position decides to turn the chooser into a 22 months € 40 put as the
22 months forward is below € 40 and therefore the 22 months € 40
put is worth more than the 22 months € 40 call.

The above shows that a simple chooser is easy to price. Consider a
chooser option with a strike price Kc, a maturity T1 and a maturity up
to the choose date of T2. To price this chooser option, one just has to
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determine the stock level, S f , such that the forward on the choose date
with an expiry equal to the maturity date of the chooser is equal to the
strike, Kc, of the chooser, i.e. the forward value of a stock price S f and
a time to maturity of T1 − T2 is equal to Kc. A put and a call option
with a strike equal to the forward and the same maturity are worth the
same. Hence, on the choose date, S f determines the tipping point for the
chooser call option to be worth more than the chooser put option. The
chooser option can now be priced as� A call option with a time to maturity of T1 and a strike Kc plus� A put option with a time to maturity T2 and a strike price S f .

Alternatively, the chooser option can also be priced as� A put option with a time to maturity of T1 and a strike Kc plus� A call option with a time to maturity T2 and a strike price S f .

This is because being long a put option and a share is the same as being
long a call option, which mirrors exactly the position of the short chooser
option when, on the choose date, the share price is above S f in which case
the owner of the chooser turns the chooser into a call option. Obviously,
when, on the choose date, the share price is below S f the owner of the
chooser decides to choose the put option. Again, mirroring the position
of the hedged portfolio as the call with strike S f and maturity T2 is ‘out
of the money’ and therefore not exercised. This results in a long put
position in the hedged portfolio.

8.2 RATIONALE BEHIND CHOOSER OPTION
STRATEGIES

The investors in chooser options apply a similar strategy to investors
in straddles. They both believe that a stock is about to go through a
volatile period but are unsure about the direction of the stock price. The
difference between an investor in a chooser option and an investor in
straddles is that the first is confident that the direction is revealed within
a certain time frame and is therefore willing to choose between a put
and a call after this time frame. As a result the investor pays less for the
chooser option than he would have paid for the equivalent straddle.
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9

Digital Options

A digital option is one of the most straightforward options. It is nothing
more than an option that gives a fixed payout if it is below or above a
certain point and does not give a payout at all in all other cases. Despite
being so simple, the digital option could still classify as an exotic option
as its payout cannot be replicated by a set of standard options. However,
rather than viewing this as an exotic option and using a Monte Carlo
process to calculate the price of a digital option, one can make a good
estimate of the price of a digital option by using option spreads. On top of
that one will find that the only real way to risk manage the digital option
is with option spreads. The vast majority of digital options are European.
Therefore this chapter only considers European digital options.

Consider the following example. An investor buys a 3 month European
digital option on BMW which pays € 10 if after 3 months the stock is
above € 50 and pays 0 if BMW is below € 50 at maturity. Figure 9.1
shows the payoff profile at maturity for this digital option on BMW.
The trader who sells this digital option on BMW can easily replicate
the price of this digital by using a geared call spread. The gearing of
this call spread depends on the width of the call spread. The wider the
call spread the lesser the gearing and the more conservative the price,
i.e. the trader would charge the investor more to buy the digital. The
trader believes that a € 2.5 wide call spread is enough to be able to
risk manage this position. In other words, the trader will price this by
selling a € 47.5/50 call spread that is 4 times geared. To see that this
replicates the behaviour of the digital, consider three different BMW
share prices at maturity. First, suppose BMW’s share price at maturity
is € 55. Under the terms of the digital the investor is supposed to get
€ 10. This is exactly what the trader’s position prescribes. Indeed, the
trader has a 4 times geared € 47.5/50 call spread and each call spread
gives a payout of € 2.5 if the stock price ends up at € 55, resulting
in a total payout to the investor of € 10. Secondly, If the share price
of BMW is € 49 at maturity, the investor is not supposed to receive
anything under the terms of the digital. However, the 4 times geared
€ 47.5/50 call spread prescribes a payout of € 6, resulting in a windfall
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Figure 9.1 Payoff at maturity from buying a digital call option on BMW. Strike price =
€ 50 and digital payout € 10

of € 6 to the trader. This obviously shows that the trader has priced the
digital conservatively by choosing this € 47.5/50 call spread and would
have been more aggressive by choosing a tighter call spread. However,
the width of the call spread is necessary to make up for the large gamma
and pin risk around € 50. Indeed, just before expiry with the stock price
exactly at € 50 the digital is not worth anything, but if the stock price
goes up to € 50.01 the digital is all of a sudden worth € 10. This is
obviously extremely hard to risk manage because the trader would not
know what delta to put against this option. Therefore the best way to
price this digital is by means of a geared call spread. Even with a call
spread the trader would still need to manage a large pin and gamma risk,
but the fact that he prices the digital as a call spread gives him a provision
against this risk. However, since the call spread gives the trader a short
position in the € 47.5 call and a long position in the € 50 call, the trader
has shifted his pin risk to the 47.5 strike and enjoys the benefit of pin on
the 50 strike. In a way, the trader has given himself a cushion to manage
the pin risk of the digital by forcing himself to be hedged from € 47.5
onwards because of the call spread. Thirdly, when the share price of
BMW is € 46 neither the digital nor the call spread prescribes a payoff
to the investor.
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9.1 CHOOSING THE STRIKES

A natural question would be ‘why is the digital in the previous sec-
tion not replicated as a € 50/52.5 call spread’? The answer is that the
€ 50/52.5 call spread achieves exactly the opposite of what the trader
wants to achieve, namely giving himself a cushion. The € 50/52.5 call
spread starts to act once the digital event has already occurred. In a way
the € 50/52.5 call spread makes the trader feel ‘richer’ than he actually
is. For example, if the stock price ends up at € 51 the 4 times geared
call spread would specify a payoff of € 4 whereas the digital would
demand a payoff of € 10. In other words, the hedging scheme of the
€ 50/52.5 call spread does not build up to a € 10 payout at a stock price
of € 50 whereas a € 47.5/50 call spread does exactly that. In a way,
the € 50/52.5 call spread is chasing the tail of the digital whereas the
€ 47.5/50 is forcing the trader to act before the digital actually kicks in
and is therefore well positioned to deal with the ‘explosive’ digital event.

9.2 THE CALL SPREAD AS PROXY FOR THE DIGITAL

A call spread is not only used to price a digital but, from the perspec-
tive of the trader, it is also the product that he actually trades. In other
words, when a trader sells a digital he books a call spread in his risk
management system instead of the exact terms of a digital. In this way,
he can accurately risk manage the digital as a call spread. The previous
sub-section showed that a call spread is a conservative proxy for the
digital and therefore at expiry of the European digital the trader checks
the payout of the call spread against the payout according to the terms
of the digital. A payout of the call spread versus a non payout of the
digital subsequently results in a windfall to the trader.

9.3 WIDTH OF THE CALL SPREAD VERSUS
GEARING

The narrower the width of the call spread the higher the gearing necessary
to replicate the digital. In turn, the higher the gearing of the call spread
the larger the risk that needs to be managed on the short strike, and
since the strikes of the call spread are so close together the trader gives
himself less of a cushion to prepare for the digital event. In other words,
the narrower the width of the replicating call spread the higher the risk
and the more the call spread behaves like the digital.
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Barrier Options

Barrier options are very popular amongst retail investors as the barrier
feature provides the investor with additional protection or leverage. From
a risk management perspective, barrier options are interesting because
the risks are discontinuous around the barrier and therefore the Greeks
become less predictable and very often even change sign around the
barrier. Barrier options are priced with Monte Carlo processes, but before
one can price barrier options one has to be fully aware of the risks around
the barrier. The risks associated with the barrier are typically of such a
nature that the terms of the barrier option have to be adjusted slightly
to be able to capture all these risks in the price and to also be able to
manage the barrier risk properly. This section discusses in depth the risks
embedded in barrier options and shows how these risks should be taken
into account in the price. This section also emphasises the skew risk
associated with a barrier option. Although there are basically 8 types of
single barrier options, the down-and-in put is used as a leading example
in order to get across all the risks within a barrier option.

The reason behind this approach is that the underlying causes for
barrier option risk are generic and once the drivers of barrier option
risk are understood for the down-and-in put, one will be able to derive
the risks for other types of barrier options. However, in this regard it is
important to distinguish between the drivers behind risk and the actual
risk. The fact that the drivers behind risk are the same for the different
types of barrier options does not mean that the risks are the same. In
fact, between different types of barrier options the symptoms of risk can
be completely opposite in nature. There are in total 8 different types of
single barrier options and the down-and-in put is chosen as a leading
example because of its popularity amongst retail investors. The 8 types
of single barrier options, the typical retail demand1 and the barrier risk to
the trader for each type of barrier option are summarised in Table 10.1.

1 Whether it is a barrier option or not, retail investors will typically sell puts and buy calls. However, it does
occur that a retail investor effectively buys a down-and-out put as part of a structured product.
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Table 10.1 Types of single barrier options

Barrier type Typical retail demand Trader’s barrier risk

Down-and-in put Sell Significant
Down-and-out put Sell/Buy Significant
Up-and-in put Sell Low
Up-and-out put Sell Low
Down-and-in call Buy Low
Down-and-out call Buy Low
Up-and-in call Buy Significant
Up-and-out call Buy Significant

Aside from single barrier options another class of barrier options
exists, namely the double barrier options. Double barriers are discussed
in sub-section 10.13.

10.1 DOWN-AND-IN PUT OPTION

A down-and-in put option is an option that only becomes a European put
option when the share price breaches a downside barrier. For example,
consider a trader who buys a 1 year 100 % European put option on
BMW that only becomes a put option if BMW’s share price ever drops
below 70 % of BMW’s initial share price during the one year term of
the option. In other words, the trader is long a 100/70 % down-and-in
put and its payout at maturity is shown graphically in Figure 10.1. The
dotted diagonal line in Figure 10.1 indicates that the payoff in this area
only occurs at maturity if the barrier of 70 % has been hit during the life
of the option. If this has not been the case, the payoff would still be 0.

Although the pricing of the down-and-in put is nothing more than
a Monte Carlo process, there are two phenomena that one needs to
understand before one can price, let alone, trade a down-and-in put. The
main risk of a down-and-in put lies in the delta change over the barrier.
Another risk that needs to be understood is the skew exposure of a down-
and-in put. The following sub-sections will discuss these risks in more
detail.

10.2 DELTA CHANGE OVER THE BARRIER FOR A
DOWN-AND-IN PUT OPTION

Consider the trader who buys the 100/70 % down-and-in put on BMW
from an investor. If the delta at inception is 0.4, the trader hedges himself
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Figure 10.1 Payoff at maturity of a down-and-in put with strike price 100 % and barrier
level of 70 %

by buying BMW shares in a ratio of 0.4 shares per option. When BMW’s
share price breaches the 70 % barrier level, the down-and-in put option
goes from not being an option to a put option that is 30 % in the money.
This obviously means that the value of the down-and-in put increases
significantly over the barrier, even if the share price moves down ever
so slightly, i.e. from 70.1 % to 69.9 %. Since delta measures the sensi-
tivity of the option price to share price movements, the absolute delta
of the down-and-in put becomes extremely large when the share price
approaches the barrier. This absolute delta can even, and typically does,
become greater than 1 when the stock price gets close to the barrier.
Since the absolute delta of a regular option can never be greater than
1, the trader would inevitably accumulate too many BMW shares when
BMW’s share price approached the barrier. This means that the trader
would need to sell any excess shares when the share price breached the
70 % barrier. The initial price of the down-and-in put, which any Monte
Carlo price comes to, assumes that these excess shares can be sold ex-
actly at the barrier level of 70 %. However, in practice this proves to be
extremely difficult as the share price is already going down for the barrier
to be breached in the first place, and the fact that the trader needs to sell
a large quantity of shares will push the share price down even further.
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Therefore, the trader almost certainly sells these excess shares below
the barrier level and as a result incurs a loss on the sale of the excess
shares. To avoid this loss, the trader should give himself a cushion to sell
any excess shares over the barrier. In order to do that, the trader prices
and risk manages a slightly different option. Namely, an option where
the barrier is shifted downward in such a way that the trader has enough
room to sell the excess shares without incurring a loss. This means that,
if the trader believes that he needs a 3 % cushion to sell the shares over
the barrier, the trader prices and risk manages a 100/67 % down-and-in
put rather than a 100/70 % one. The following sub-section discusses the
factors that influence the magnitude of the barrier shift. However, before
that is discussed it is important to recognise that a long down-and-in put
position goes from being long gamma to short gamma as the share price
approaches the barrier. In other words, the gamma of a down-and-in
put changes sign around the barrier.

10.3 FACTORS INFLUENCING THE MAGNITUDE
OF THE BARRIER SHIFT

There are 5 main influencing factors that impact the magnitude of the
barrier shift, which are all discussed separately in this sub-section. This
sub-section only discusses the influencing factors for the down-and-in
put, but the same analysis can easily be extended to other types of barrier
options. Therefore, this sub-section serves as a blueprint for all barrier
options.� The size of the down-and-in put transaction. The larger the size the

more shares have to be sold over the barrier and therefore the trader
is more likely to move the share price against him, i.e. downward. In
other words, the larger the size the larger the barrier shift.� The difference between strike price and barrier level. If this differ-
ence is large, the down-and-in put goes from not being a put to a put
that is far in the money when the share price breaches the barrier.
This means that the greater the difference between strike price and
barrier level the greater the barrier shift that a trader would apply. For
example, a 130/70 % down-and-in put should have a larger barrier
shift than a 100/70 % down-and-in put.� The volatility of the underlying stock. The larger the volatility of a
stock the larger is the risk to the trader of the stock price approaching
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the barrier level. This can be seen by a simple example. Consider
the 100/70 % down-and-in put on a highly volatile stock with the
stock currently trading at 71 % of its initial level. Suppose that the
trader has priced this option as a 100/67 % down-and-in put and is
also risk managing it as such. Suppose further that the absolute delta
of the 100/67 % is 2.5 and that the trader is long 200 thousand of
these 100/70 % down-and-in puts. Since the trader is risk managing
the 100/70 % down-and-in put as a 100/67 % one and the delta of the
latter is 2.5, the trader is long 500 thousand of the underlying shares.
If the stock gaps down 10 %, the down-and-in put obviously knocks
in and therefore becomes a regular deep in the money 100 % put.
Suppose that the delta of this deep in the money 100 % put is 1 and
hence the trader needs to have a long position of 200 thousand shares
against this put. However, the trader was long 500 thousand shares
and therefore he had to sell 300 thousand shares over the barrier.
Because the stock gapped down, the trader can only sell these shares
at 61 % of the initial stock price. Since the trader risk managed this
as a down-and-in put with a barrier of 67 %, he is basically long 300
thousand shares outright from 67 % of the initial level to 61 % of the
initial level. If the initial level was, for example, € 100, this would
amount to a loss of € 1.8 million. The above example shows that, if a
stock is or can be highly volatile, the buyer of a down-and-in put needs
a larger barrier shift in order to be protected against a larger move. In
other words, the larger the volatility the larger the barrier shift.� The barrier level. Since lower stock prices tend to go hand in hand
with higher volatilities and higher volatilities result in larger barrier
shifts, traders need to apply larger barrier shifts to lower barrier levels.
For example, the barrier shift for a 100/60 % down-and-in put should
be larger than for a 100/70 % down-and-in put.

Some cases are ambiguous as to which down-and-in put should
have the larger barrier shift. For example, does a 120/70 % down-
and-in put need a larger barrier shift than a 100/60 % down-and-in
put? On the one hand one can argue that it does as the difference
between strike and barrier is larger for the 120/70 % down-and-in
put than for the 100/60 % one. On the other hand, the barrier level of
the 100/60 % down-and-in put is lower than the 120/70 % one and
therefore it can be argued that the 100/60 % down-and-in put should
have the larger barrier shift. This example shows that determining
the magnitude of a barrier shift is not an exact science. It is up to



JWBK097-10 JWBK097-DeWeert February 5, 2008 2:38 Char Count= 0

62 Exotic Options Trading

the trader’s own risk assessment which one of the two down-and-in
puts he assigns a larger barrier shift to. However, for sure the trader
will assign a larger barrier shift to both the 120/70 % and 100/60 %
down-and-in puts than the barrier shift he finds appropriate for the
100/70 % and even the 110/70 % down-and-in put.� The time left to maturity. The closer one gets to maturity the larger
the absolute delta will be just before the barrier and therefore the
larger the change in delta over the barrier. This obviously translates
into larger barrier shifts for shorter maturities and typically traders
use a scattered barrier table where the barrier shift increases once
the down-and-in put gets closer to maturity. The reason that, if the
stock price is just above the barrier, the absolute delta becomes larger
when the time left to maturity gets shorter is because there is less time
left for the down-and-in put to knock in. This means that the barrier
becomes an all or nothing event and starts to mimic the features of a
digital option and therefore the change in value of the down-and-in
put over the barrier becomes larger when the time left to maturity
shortens. Since the change in value increases for a barrier breach
when the time left to maturity is shorter, the absolute delta is larger
for a shorter time to maturity, see Figure 10.2. This all adds up to the
fact that the shorter the time left to maturity the larger the barrier
shift a trader applies to a down-and-in put.
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Figure 10.2 Delta of a down-and-in put plotted against the time left to maturity when
the share price is just above the barrier level
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10.4 DELTA IMPACT OF A BARRIER SHIFT

Although a barrier shift is mainly there to manage the Greeks close to
the barrier (gamma and delta are larger without a barrier shift) one has
to realise that a barrier shift also affects the delta further away from the
barrier. For example, the larger the barrier shift on a long down-and-in
put the smaller the absolute delta and therefore the smaller the amount
of long shares to delta hedge the down-and-in put. This means that a
barrier shift can also be used to express a delta view. If one is bullish on
the underlying stock one should choose to have a smaller barrier shift
and therefore effectively run a longer delta (more long shares) against
the down-and-in put. If one is bearish on the underlying stock one should
choose to increase the barrier shift and therefore run fewer long shares
against the long down-and-in put position.

10.5 SITUATIONS TO BUY SHARES IN CASE OF A
BARRIER BREACH OF A LONG DOWN-AND-IN PUT

There are specific situations in which the trader, who is long a down-and-
in put, does not need to sell shares when the stock price goes through
the barrier level, but actually needs to buy shares. These situations occur
when the stock price is still far away from the barrier level and therefore
has not accumulated any excess delta after which it goes through the
barrier in a gap move down. In these cases the absolute delta actually
increases because of a barrier breach.

10.6 UP-AND-OUT CALL

An up-and-out call is a call option that ceases to exist if the underlying
stock hits a certain upside barrier during the life of the option. An up-
and-out call is obviously cheaper than a regular call and can therefore be
advantageous to investors who are bullish on a stock but do not believe
it will go above a certain level during the life of the option. Consider a
trader who sells a 1 year 100/120 % up-and-out call option on BMW.
This means that if BMW’s share price ever breaches 120 % of the initial
level, the call knocks out and therefore ceases to exist. In this case the
up-and-out call loses a lot of value over the barrier as it goes from a
call that is 20 % in the money to something that is worthless. The trader,
who holds a short position in this up-and-out call, is therefore short
shares against this option as his delta hedge when BMW’s share price
gets close to the 120 % barrier. Note that a regular short call position is
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hedged by buying shares. This is initially also the case for an up-and-out
call, but when the share price gets closer to the upper barrier level there
is an inflection point where the trader will need to go short shares to be
delta hedged. However, once the up-and-out call knocks out, the trader
needs to buy back these shares as it is no longer a hedge against anything
(the option has knocked out). Unlike the long down-and-in put position
the trader needs to shift the barrier upward for a short up-and-out call
position. However, apart from the direction of the shift the factors that
influence the magnitude of the barrier shift are the same for both the
long down-and-in put position and the short up-and-out call position.
These influencing factors are described in sub-section 10.3.

10.7 UP-AND-OUT CALL OPTION WITH REBATE

Consider a trader who sells the 1 year 100/120 % up-and-out call option
with the additional feature that when the up-and-out call option knocks
out it pays a rebate to the investor of 10 %, i.e. half its intrinsic value. This
can obviously still be priced as a Monte Carlo process. A more interesting
question is how does this rebate affect the barrier shift? Because of the
rebate, the up-and-out call goes from an option with an intrinsic value
of 20 % to something that is worth 10 % when the stock breaches the
barrier of 120 %. Hence, the change in value over the barrier is far less
in the case where the up-and-out call pays a rebate than if it does not pay
a rebate. In other words, the discontinuity of the up-and-out call price is
less with a rebate than without a rebate. This means that the trader will
be short fewer shares when the share price gets close to the barrier and
therefore needs to buy back less shares when the barrier is breached.
For this reason the barrier shift can be smaller when the up-and-out call
pays a rebate than if it does not pay a rebate.

10.8 VEGA EXPOSURE UP-AND-OUT CALL OPTION

A long position in an up-and-out call option is not necessarily long vega.
In fact, more often than not a long up-and-out call position results in be-
ing short vega. This means that, if the implied volatility of the underlying
goes up, the up-and-out call option actually becomes less valuable. The
reason being that a higher implied volatility results in a higher prob-
ability of the call knocking out and therefore a lower chance of the
up-and-out call having a payout at maturity. Naturally, an up-and-out
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call is not always short vega. Indeed, if it is a very upside barrier the
probability of the up-and-out call knocking out is very low anyway and
therefore an increase in implied volatility has a much bigger impact on
the option part of the up-and-out call than on the fact that there is a
higher chance of the option knocking out. Hence an up-and-out call is
long vega for very upside barriers and short vega for lower barriers.

10.9 UP-AND-OUT PUT

There are certain types of barrier options where there is no need to apply
a barrier shift. For example, a trader who is long an up-and-out put does
not need to apply a barrier shift. The reason being that the delta hedge
against a long up-and-out put position is always a long share position.
This means that the trader needs to sell shares over the barrier. But for
that he does not need to shift the barrier as he can always sell out his
shares 1 cent below the barrier in which case he would, at worst, only
lose a cent on the number of shares he needs to sell.

10.10 BARRIER PARITY

Now that both knock-in as well as knock-out barriers have been ex-
plained, it is time to introduce the barrier parity. Barrier parity states
that a knock-out (KO) option plus a knock-in (KI) option with the ex-
act same barrier have the same payoff profile as the regular European
option. Mathematically this reads as follows,

KO-call + KI-call = European call (10.1)

KO-put + KI-put = European put (10.2)

As an example, consider a 100/70 % down-and-out put plus a 100/70 %
down-and-in put. The down-and-out put means that a 100 % put ceases to
exist whenever the 70 % barrier is breached. However, the down-and-in
put ensures that a new 100 % put comes into existence at the same time
and therefore a down-and-in put plus a down-and-out put is effectively
a regular European put.

10.11 BARRIER AT MATURITY ONLY

The previous sub-sections discussed barrier options where the barriers
were live continuously throughout the life of the option. However, certain
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barrier options are only live at maturity or on specific days. These barrier
options can still be priced as a Monte Carlo process. However, barrier
options that are only live at maturity can also be priced as a combination
of European options.

Consider a trader who buys a 1 year 100/70 % down-and-in put option
on BMW where the option can only knock in at maturity. This option
is worth less than the equivalent down-and-in put option that can knock
in throughout the life of the barrier option. The way to price this down-
and-in put option with knock in at maturity only is as follows:� The trader buys 10 times a 1 year 70 % European put option� The trader sells 10 times a 1 year 67 % European put option� The trader buys one 1 year 70 % European put option

The fact that the trader buys 10 times the 70 % put and sells 10 times the
67 % put is an overhedge and therefore a conservative way to replicate
the payoff of the 100/70 % down-and-in put at maturity only. The 3 %
wide put spread can be seen as a barrier shift. The payoff at maturity for
the down-and-in put (DIP) with knock in at maturity only and the payoff
replicated through a combination of European puts are both shown in
Figure 10.3. Figure 10.3 clearly shows that the replication through a
geared put spread plus a 70 % put is a lower estimate and therefore
results in a more conservative (lower) price for the 100/70 % down-
and-in put with knock in at maturity only. Obviously, the tighter the
put spread the more the replication converges to the actual price of the
down-and-in put with knock in at maturity only. The gearing of the put
spread depends on the width of the put spread and the difference between
strike and barrier level. The gearing can be calculated by dividing the
strike/barrier differential by the width of the put spread. In other words,
if one wants to replicate the 100/70 % down-and-in put with knock in
at maturity only in terms of a 70 % put plus a 2 % geared put spread,
i.e. a 70/68 % put spread, the gearing of the put spread would be 15
(30/2 = 15).

10.12 SKEW AND BARRIER OPTIONS

Barrier options tend to have large skew exposures. Luckily it is easy to
see whether a barrier option is long or short skew. Risk wise one can
compare a knock in barrier to a long option position at that barrier and
a knock out barrier to a short option position at the specific barrier. This
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Figure 10.3 Payoffs for the down-and-in put, knock in at maturity only, and its repli-
cated payoff, 10 times geared 70/67 % put spread plus a 70 % put

means that the owner of a down-and-in put has a risk profile that can
be compared to being long an option at the knock-in level. Since this
is naturally a downside option, the owner of a down-and-in put option
is long skew. Another way to see that the owner of a down-and-in put
option is long skew is that, if the skew goes up, the stock is expected to
become more volatile when it goes down and therefore the probability
of the down-and-in put knocking in goes up. As a result the down-and-in
put becomes more valuable. A trader who has a short position in an up-
and-out call is short skew. This can be seen by comparing his position
to a call spread, where he is short a call with a strike price equal to the
strike of the up-and-out call and long an upside call with a strike equal
to the barrier level of the up-and-out call. Another way to see that he
is short skew is by looking at the price change of the up-and-out call if
the skew flattens (goes down). If the skew flattens the upside implied
volatility goes up and therefore it becomes more likely that the up-and-
out call knocks out, which makes the up-and-out call less valuable. The
trader, who holds a short position in the up-and-out call, makes money
from the skew flattening and is therefore short skew. Table 10.2 gives
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Table 10.2 Skew position barrier option

Skew exposure
Position barrier option barrier option Direction barrier shift

Long down-and-in put Long skew Downward
Long up-and-out put Long skew No shift needed
Long up-and-in call Short skew Upward
Long down-and-out call Short skew No shift needed
Short up-and-out call Short skew Upward

different barrier option positions with their associated skew exposures.
Obviously, if the position is opposite to the one stated in Table 10.2, the
skew exposure is the opposite as well.

10.13 DOUBLE BARRIERS

Apart from options with just one single barrier, there is another common
class of barrier options, namely the so-called double barriers. However,
even with a double barrier option one has to consider each barrier sep-
arately to determine the magnitude and direction of the barrier shift.
Double barrier options are typically used within structured products to
achieve a specific type of payoff. Although specific examples of dou-
ble barrier options and their applications within structured products are
given in Chapter 25, it is important to devote a sub-section to double bar-
rier options that discusses the two main types of double barrier options.
Before looking at the different types of barrier options it is worth empha-
sising once more that the pricing of any barrier option is established by
using a Monte Carlo process. Therefore, from a trading perspective, the
most interesting element of a barrier option is determining the magnitude
and direction of the barrier shift.

The first type of double barrier option features a dependency between
the trigger of the first and second barrier. That is to say, the second barrier
can only trigger if the first barrier has been triggered. Although the
Monte Carlo modeling is slightly more complex because of the built in
condition, it is in fact more transparent from a risk perspective than if the
barriers were completely independent. Indeed, one specifically knows
the conditions and therefore the option characteristics under which the
barriers can be triggered. This means that one can more easily establish
the required barrier shift for each of the barriers. Consider the following
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example. A trader sells a 100 % call that knocks in at 90 % and knocks
out at 120 %. However, it can only knock out after it has breached the
90 % level first. For this double barrier it is relatively easy to determine
the direction of the respective barrier shifts. Since the 120 % barrier is
dependent on the 90 % barrier, one should first focus on determining
the shift for the 90 % one. Because the trader is short the double barrier
call option, and the double barrier call option increases in value when
the 90 % level is breached, the trader will want to shift the 90 % barrier
level downward. To determine the required shift for the 120 % barrier,
it is important to establish that this barrier can only trigger once the
double barrier has already become a call option (the 90 % barrier has
been breached). Therefore, to determine the shift for the 120 % barrier
one basically has to determine the shift for a regular 100/120 % up-and-
out call. The required barrier shift for a short up-and-out call is upwards.
Indeed, the option goes from being an ‘in the money’ call option to not
being a call at all and therefore goes down in value significantly. The
trader will have hedged himself by selling shares, which he needs to buy
back once the barrier level is breached. To give himself a cushion to buy
back these shares, the trader wants to shift the barrier upwards at the
120 % level.

For the second type of double barrier option each of the two barri-
ers can be triggered independently. In others words, when the specific
barrier level is breached, the barrier triggers regardless of whether the
other barrier has been triggered. This type of double barrier option is
slightly easier to model as a Monte Carlo process. However, from a risk
perspective it is actually less transparent. The reason being that one has
an indefinite picture of what the option characteristics look like when
either of the barriers breaches. This becomes clear by considering the
example above with the difference that the 120 % barrier can trigger
regardless of whether the 90 % barrier has been triggered. This double
barrier option is worth less than the conditional one in the example above
as it can already knock out before it actually has become a call option.
This also means that the barrier shift at 120 % can be less if it breaches
before the 90 % barrier has been breached. However, if the 90 % bar-
rier has been breached first, one requires the same barrier shift as for a
regular up-and-out call. Hence, an unconditional double barrier has a bit
more ambiguity regarding the exact barrier shift. Nonetheless, by taking
the same barrier shifts as the conditional double barrier the trader just
prices the unconditional double barrier slightly conservatively.
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Forward Starting Options

A forward starting option is an option which does not start until the
so-called forward start date. This also means that the strike price of
this option is dependent on the underlying share price at this forward
start date. The price of a forward starting option can in most cases be
estimated with the equivalent regular option which has the same term.
Obviously, to exactly price this forward starting option one would use a
Monte Carlo process that simulates all the different paths according to
the stochastic variables, calculates the price by adding the payoffs for
each path and subsequently divides this sum by the number of generated
paths. This would give the exact price of the forward starting option,
assuming that the stochastic variable inputs are correct and enough paths
are generated. In other words, pricing the forward starting option is easy
once one understands how to input the right stochastic variable for the
Monte Carlo process. This is exactly what this section will focus on.
Moreover, this chapter will show that skew is the variable to be most
wary of when pricing a forward starting option.

11.1 FORWARD STARTING AND REGULAR
OPTIONS COMPARED

Consider a forward starting 100 % put option on BMW that starts in one
month and then has a maturity of 1 year. The fact that the forward starting
option has a strike of 100 % means that, in one month, the strike of the
forward starting option is set to the prevailing stock price on that date.
Suppose that BMW stock is trading at € 40. One can estimate the price of
this forward starting option on BMW by pricing a 1 year ‘at the money’
put on BMW. This price will be almost the same as the 100 % one month
forward starting option which has a maturity of 1 year from the date of
the forward start date. Obviously, there is a slight difference in price
because of the fact that the buyer of a forward starting option only holds
an option in one month but has to pay for it up-front. This means that
one has to discount the price of the regular 1 year option by one month
to get the price of the 1 month forward starting option. Apart from this
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interest rate differential there are two other potential pitfalls in deriving
the price of a forward starting option from the equivalent regular option.
The first pitfall is that there might be a dividend in the 1 month up to
the forward start date and not the year after. This means that the forward
starting option has one dividend less than the regular option. Therefore,
to derive the price of the forward starting option from the regular option,
one has to price the regular option without the dividend that occurs in the
month up to the forward start date. Otherwise, the price of the forward
starting put option would be overestimated. The second pitfall is that,
depending on the strike level in one month, one might not be using the
correct implied volatility to price the forward starting option. Indeed,
it was shown in Chapter 5 that the lower the strike price the higher the
implied volatility. This means that if BMW’s share price goes down in
the month up to the forward start date, the regular option should have
been priced at a higher implied volatility in order to derive the price of
the forward starting option from the equivalent regular option. However,
if the stock price were to go up during that month, the regular option
should be priced at a lower implied volatility to derive the correct price
for the forward starting option. The problem of skew can be solved
by going long delta if one buys the forward starting option and going
short delta if one sells the forward starting option. The next sub-section
shows how to hedge the skew risk during the forward start period for the
forward starting option. The last sub-section deals with another distinct
skew feature that strongly affects the price of a forward starting option,
namely the term structure of skew.

11.2 HEDGING THE SKEW DELTA OF THE FORWARD
START OPTION

The previous sub-section showed that the price of any forward starting
option is dependent on the underlying share price at the forward start
date, as the strike determines what implied volatility each option should
be priced at. However, the strike price only becomes known on the for-
ward start date. Therefore, the implied volatility is always an unknown
in pricing the forward starting option. Whether a trader prices the for-
ward start option with a Monte Carlo process or by deriving it from the
equivalent regular option, he always uses the current share price as a
reference for the implied volatility of the forward starting option. This
means that, if the trader buys a forward starting option, he loses money if
the share price goes up and, if he sells a forward starting option, he loses
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money when the share price goes down. The trader can easily hedge
this exposure by buying or selling the underlying shares. The following
example shows how this is done in practice.

Consider the 100 % forward starting put option on BMW, where the
strike price is set in 1 month to then have a maturity of 1 year. Suppose
BMW is trading at € 40 and the ATM implied volatility is 20 %. Fur-
thermore the vega of this forward starting option is 0.30 % and the trader
buys 1 million of these forward starting puts. Also, because of the effect
of skew the ‘at the money’ implied volatility goes down by 0.15 % for
a 1 % (€ 0.40) move up in BMW’s share price. Since the trader’s best
guess for the ATM implied volatility in one month’s time is the current
implied volatility of 20 %, the trader exposes himself to an increase in
BMW’s share price. Luckily the trader can easily hedge himself to this
sensitivity in share price by buying shares. The number of shares the
trader needs to buy can be calculated as follows. For every € 0.40 in-
crease in BMW’s share price the trader loses 1 million multiplied by
€ 40 multiplied by 0.30 % multiplied by 0.15 %, which equals a loss of
€ 180 per € 0.4 increase in share price. This can be hedged by buying
180/0.4 = 450 BMW shares.

11.3 THE FORWARD START OPTION AND THE SKEW
TERM STRUCTURE

It is important to recognise that the term structure of skew strongly
impacts the price of a forward starting option. This has been overlooked
by numerous investment banks for a prolonged period and has therefore
resulted in large losses on their side. The following example clearly
shows the risks of the skew term structure in pricing a forward starting
option.

Consider a trader who is selling a three year 70 % put option on BMW
that is forward starting in 2 years. If the trader blindly prices this option
off his implied volatility curve he will look at the 3 year point on his
volatility surface, which has a much lower skew than the skew for the
1 year maturity. However, a three year option that is forward starting in
2 years is effectively a 1 year option and should therefore be priced with
the skew of the 1 year maturity. To make this more intuitive, suppose that
the 3 year ‘at the money’ implied volatility is 24, the 1 year skew is 1.5 %
per 10 % and the 3 year skew is 0.5 % per 10 % change in strike price.
This means that the volatility surface prescribes an implied volatility of
25.5 % for the 70 % 3 year put forward starting in 2 years. However,
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since the option is forward starting in 2 years, the forward starting 70 %
put should be priced with an implied volatility using the 1 year skew,
which takes the implied volatility to 28.5 %. In other words, the implied
volatility one should use to price a forward starting option is that derived
from the ‘at the money’1 implied volatility point at expiry of the forward
starting option and, in case of a downside strike, one should adjust this
volatility by the prescribed skew of the maturity of the real term of the
forward starting option, i.e. the time between expiration and the forward
start date.

11.4 ANALYTICALLY SHORT SKEW BUT
DYNAMICALLY NO SKEW EXPOSURE

The paradox with a forward starting option is that a short position in
the 70 % put on BMW, expiring in 3 years and forward starting in 2
years, is analytically short skew but has no skew exposure dynamically
during the forward starting period. Dynamically short skew means that,
if the share price goes down, the position gets shorter vega and if the
share price goes up, the position gets longer vega. A short position in
a regular 3 year 70 % put option on BMW is dynamically short skew
as this position gets shorter vega with the share price moving down.
The reason that a forward starting option is not short skew dynamically
during the forward starting period is that, if the share price moves down
the strike moves down as well. Thus, for a regular short downside option,
a downward moving share price means that the share price moves closer
to the strike price and therefore the position gets shorter vega. For a short
forward starting option, a downward moving share price does not change
anything for the vega position as the percentage strike stays the same.
However, both a short position in the regular and the forward starting
option are short skew analytically. Analytically short skew means that if
the skew increases, i.e. the difference in implied volatility increases for
a 10 % difference in strike, the position loses money, i.e. the downside
option becomes more valuable and therefore being short this downside
option costs money. This is obviously the case for a short position in
either the regular option or the forward starting option.

The fact that a forward starting option is analytically short skew but
not dynamically makes it extremely difficult to hedge one’s exposure to

1 One should really derive it from the ‘at the money forward’ volatility. This is the implied volatility at the
forward level rather than the current ‘at the money’ level.
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forward starting options. This is because one can only hedge with regular
options, which are both analytically as well as dynamically short skew.
This means that if one hedges a short 70 % forward starting option by
buying regular options, one needs to role up the strike if the share price
is going up and role down the strike if the share price is going down.
To make matters worse, sub-section 11.3 showed that a three year 70 %
put forward starting in 2 years is analytically mainly exposed to the
one year skew. That would mean that one has to hedge a short position
in this option by buying a 1 year 70 % put. However, as time passes
one would need to role forward this hedge to continue to be hedged on
the 1 year skew. This means that it is extremely difficult to analytically
hedge forward starting options against skew. First of all, one would
need to hedge with options having a maturity equal to the term of the
forward starting period, i.e. the maturity minus the forward start date,
and continue to role this maturity forward as time lapses. On top of that,
one would need to role the strike up if the share price moved up and role
the strike down if the share price moved down.

11.5 FORWARD STARTING GREEKS

The Greeks of a forward starting option are similar to the equivalent
option with a time to maturity equal to the period between forward start
date and expiration. However, delta,2 gamma and theta will only kick in
once the forward starting option has actually struck, i.e. on the forward
start date. Only then will delta, gamma and theta get a value. For vega
this is not the case and it does have a value regardless of whether the
forward starting option has struck. In other words, even if the forward
starting option has not struck yet it is already exposed to changes in
implied volatility. The vega of a forward starting option is similar to
an option with a time to maturity equal to the period between forward
start date and expiration of the forward starting option. The only main
difference is that the level of volatility used to determine this vega should
equal the implied volatility of the actual expiration of the forward starting
option rather than the level associated with the actual term of the forward
starting option.

2 This does not take the skew delta into account.
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Ladder Options

Ladder options are designed for investors who want to get exposure to
the upside of a stock while at the same time locking in the performance
of the stock if it ever goes above certain levels. This type of option is
particularly popular among retail investors and is typically structured
as a capital guaranteed note with unlimited upside participation and the
added advantage that a certain performance is guaranteed once the stock
goes above a certain level. The following sub-section gives an example
of a ladder option.

12.1 EXAMPLE: LADDER OPTION

Consider an investor who wants to go long BMW stock but wants to
make sure that if the stock ever goes above 105 % or 110 % he receives
at least 5 % or 10 % respectively. The investor decides to buy a 1 year
ladder option which has full participation in the upside of BMW stock
and assures a payoff of the greater between the performance of BMW and
5 % if the stock ever goes above 105 % and the greater of the performance
of BMW and 10 % if the stock ever goes above 110 %. Mathematically
the payoff at maturity looks like:

C Ladder
T = max

[
X,

BMWT − BMW0

BMW0

]
,

where

X =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 % If BMW never > 105 % during the one year term of the
ladder option

5 % If BMW ever > 105 % during the one year term of the
ladder option

10 % If BMW ever > 110 % during the one year term of the
ladder option

Although the payoff of the ladder option looks complicated, it is surpris-
ingly easy to price with the knowledge of barrier options with rebates.
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12.2 PRICING THE LADDER OPTION

The ladder option can be priced as a series of higher strike knock-
out calls with rebates, where the strike of the following knock-out call
equals the barrier level of the previous knock-out call and the rebates are
equal to the ‘additional’ performance that gets locked in. Obviously, the
highest strike call does not have a knock-out level. The ladder option in
sub-section 12.1 can be priced by the following set of options:� Investor is long a 100 % call which knocks out at 105 % to then pay a

rebate of 5 %.� Investor is long a 105 % call which knocks out at 110 % to then pay a
rebate of 5 %.� Investor is long a 110 % call without any knock-out level.

Since, at the barrier level, the rebate of the knock-out call is equal to
the intrinsic value,1 the discontinuity in option price is minimal over the
barrier. Because the difference in option price is so small over the barrier
the trader barely needs to apply any barrier shift. Moreover, regardless
of when the option knocks out during the term of the option, the trader,
who is short this knock-out call, would either need to sell shares over
the barrier or not do anything at all on the underlying stock.2 This means
that his barrier risk is basically nonexistent as he can always put an offer
in at 1 cent below the barrier for the amount of shares that he would
need to sell. This means that the most the trader can lose is 1 cent on the
amount of shares he would need to sell.

1 The time value of the knock-out call will be minimal at the barrier as almost any path of stock price will
predict the stock to go through the barrier.

2 The ladder structure as a whole might force the trader to buy shares over the barrier because the trader is
short gamma from the higher strike calls. However, this short gamma risk is already priced in and therefore does
not need to be used as an excuse to apply a barrier shift.
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Lookback Options

The principle of a lookback option is to give the investor the maximum
payoff based on perfect hindsight. The lookback takes two forms. One
where the settlement price of the option is chosen with perfect hindsight
of the stock’s path during the term of the option and the strike if fixed.
And one where the strike is chosen with perfect hindsight and the set-
tlement price is the stock price at maturity of the option. In other words,
there are four different types of lookback options:� Fixed strike call lookback (Max lookback)

– Pays the difference between the strike and the highest stock level
during the term of the option.� Fixed strike put lookback (Min lookback)

– Pays the difference between the strike and the lowest stock level
during the term of the option.� Floating strike call lookback

– Pays the difference between the stock price at maturity and the
lowest stock level during the term of the option.� Floating strike put lookback

– Pays the difference between the stock price at maturity and the
highest stock level during the term of the option.

13.1 PRICING AND GAMMA PROFILE OF FIXED
STRIKE LOOKBACK OPTIONS

A fixed strike lookback option will typically be priced with a Monte
Carlo process. However, the fixed strike lookback can also be priced as
a ladder option where the lock in levels are one tick apart. For example,
one can price a fixed strike € 45 call lookback on BMW, where the tick
value is 1 cent, in the following way:� Investor is long a € 45 call which knocks out at € 45.01 to then pay a

rebate of € 0.01.� Investor is long a € 45.01 call which knocks out at € 45.02 to then
pay a rebate of € 0.01.
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� Investor is long a € 45.02 call which knocks out at € 45.03 to then
pay a rebate of € 0.01.

...� Investor is long a € 50 call which knocks out at € 50.01 to then pay a
rebate of € 0.01.

...

Obviously a lookback put option can be priced as a ladder option equiv-
alent to a series of down-and-out puts with a cent rebate on each.

The gamma profile of a Max lookback option becomes intuitive when
viewing it as a ladder option. Indeed, as long as the stock goes up there
will be gamma on the lookback option and the gamma will decrease
quickly when the stock goes down, as the options below have already
knocked out and therefore have no gamma on them any more. Therefore
the gamma of a Max lookback is highest when the stock is at its high,
taken from the start of the option term, and increases over time as long
as the stock is at or close to its high. For the Min lookback it is exactly
the opposite. The gamma is highest when the stock is at its low, taken
from the start of the option trade.

Therefore the gamma and vega exposure of a Max lookback option
can be hedged by selling a series of plain vanilla upside calls that are,
say, 5 % apart. The Min lookback would be hedged by selling a series
of downside plain vanilla puts.

13.2 PRICING AND RISK OF A FLOATING STRIKE
LOOKBACK OPTION

Like the fixed strike lookback, the floating strike lookback would al-
ways be priced as a Monte Carlo process. However, unlike the fixed
strike lookback, it is virtually impossible to replicate the floating strike
lookback as a set of knock-out options. Since the strike of a floating
strike lookback call resets if the share price goes down, one can see that
the closest way to replicate the floating strike lookback call option is
as a set of forward starting options. However, the situation occurs that
these forward starting options are only struck if the share price is lower
than the share price of all the previous days since the inception of the
lookback option. Unfortunately, a knock-in feature that is dependent on
the future share price cannot be captured by the forward starting option.
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Nonetheless, to understand the risk of a floating strike lookback option
it is very useful to think in terms of forward starting options. It basically
means that a floating strike lookback call option is effectively exposed to
forward starting risk for as long as the share price goes down. A floating
strike lookback put is exposed to forward starting risk for as long as the
share price goes up. This means that the floating strike lookback option
has a degree of risk associated with forward starting options. To make
this more clear consider the following example.

Consider a trader who sells a one year floating strike lookback call
option. The trader is obviously short skew, because as long as the share
price goes down forward starting options are struck and he therefore gets
shorter vega. On top of that, the forward starting option that is struck in
this case is on a higher implied volatility than the ‘at the money’ implied
volatility. If the share price goes up he will in turn get longer vega. Unlike
a regular forward starting option (see sub-section 11.2), the trader would
not go short delta against the lookback option since it is not certain that
any forward starting option will get struck. For example, if the share
price never goes below the initial share price, no forward starting option
gets struck. For a floating strike lookback put option the exact opposite
holds. Consider a trader who sells a floating strike lookback put option.
In this case the trader is long skew, as he goes shorter vega if the share
price goes up because new options get struck.
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Cliquets

Cliquet options are options where the strike price of the option potentially
resets at predetermined points in time. The most common cliquet option
is the ratchet option. The ratchet option is an option where the strike price
resets at predetermined points in time while at the same time locking
in the performance of the previous period. This chapter discusses the
pricing and risk of the ratchet option and will show that it is nothing
more than a set of forward starting options.

14.1 THE RATCHET OPTION

Consider a 3 year 100 % ratchet call option on BMW that locks in the
performance of BMW in each year. In other words, the strike price of
the call resets every year to the prevailing stock level of BMW while at
the same time locking in the performance of that year. Suppose that the
initial stock level of BMW is S0 = € 40, after 1 year it is S1 = € 45,
after the second year it is S2 = € 50 and after the third year BMW stock
is trading at S3 = € 45. The contribution of each year to the payoff at
maturity of this ratchet option can be summarised by� the contribution of year 1 is max [S1 − S0, 0] = € 5;� the contribution of year 2 is max [S2 − S1, 0] = € 5;� the contribution of year 3 is max [S3 − S2, 0] = € 0.

The payoff formula for each year clearly shows that the strike price of
the ratchet option resets each year to the prevailing stock price, i.e. the
initial strike is S0, after one year the strike resets to S1 and after two
years the strike resets to S2. The full payoff of an X % ratchet call option
at maturity with n + 1 observations and therefore n resets is

n∑
i=0

max

[
Si+1 − X

100
Si , 0

]
, (14.1)
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where Si is the stock level after the i-th period. Obviously, the payoff at
maturity for an X % ratchet put option looks like

n∑
i=0

max

[
X

100
Si − Si+1, 0

]
. (14.2)

Since the strike price resets every year and the performance over the
previous period gets locked in, the ratchet option can be priced as a set of
forward starting options. Obviously, since the payoff occurs at maturity
the value of each forward starting option needs to be discounted by the
period from expiry of each forward starting option till the maturity of
the ratchet option. In other words, the 3 year ratchet call option on BMW
can be priced by adding the following forward starting options:

1. A one year at the money call option with a delayed payout date of
two years.

2. A forward starting at the money call option with a forward start date
in one year’s time and maturing in two years’ time with a delayed
payout date of one year.

3. A forward starting at the money call option with a forward start date
in two years’ time and maturing in three years’ time.

In a perfectly normally distributed world where there is no skew and
BMW is a non-dividend paying stock, the price of the 100 % ratchet call
option would be

2∑
i=0

e−r ·i [
S0 N (d1) − S0e−r N (d2)

]
e−(3−(i+1))r =

2∑
i=0

e−2r
[
S0 N (d1) − S0e−r N (d2)

]
, (14.3)

where r is expressed on an annualised basis, i.e. the unit of time is one
year. Equation 14.3 is derived from the Black–Scholes formula for a call
option

ct = St N (d1) − K e−r (T −t) N (d2), (14.4)

where

d1 = ln
( St

K

) + (
r + 1

2σ
2
)

(T − t)

σ
√

T − t
, (14.5)

d2 = d1 − σ
√

T − t . (14.6)
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In equation 14.3, e−r ·i represents the discounting in order to get the
price of the forward starting option and e−(3−(i+1))r takes care of the
discounting as a result of the delayed payoff date. Also, in equation
14.3, d1 and d2 are calculated with T − t being equal to 1 and K = S0.

In practice skew does exist and therefore a ratchet option would always
be priced as a Monte Carlo process.

14.2 RISKS OF A RATCHET OPTION

Since a ratchet option can be priced as a set of forward starting options,
the risks involved are very similar to those of a forward starting op-
tion. Therefore, the main risk of a ratchet option manifests itself in the
skew, see Chapter 11. For example, numerous investment banks have
lost money by selling ratchet call spreads. They were, for example, sell-
ing 100/130 % ratchet call options. An n + 1 year 100/130 % ratchet call
spread with yearly resets has the following payoff:

n∑
i=0

max [min {Si+1 − Si , 0.3 · Si } , 0] , (14.7)

where Si is the stock level after the i-th period. However, selling call
spreads means selling skew, as the bank sells the lower strike and
buys the higher strike. This obviously means that the bank has to take
into account all the issues with forward starting options discussed in
Chapter 11. For a long period several banks have been pricing these
forward starting options using the skew of the specific maturity rather
than the skew associated with the maturity equal to the term of the for-
ward starting option, i.e. the maturity minus the forward start date, see
Chapter 11, sub-section 11.3. This way of pricing has resulted in large
losses for some banks.
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Reverse Convertibles

A reverse convertible is a structure where an investor buys a bond and
sells an ‘at the money’ put option to enhance the coupon. Therefore the
coupon of a reverse convertible is higher than the coupon on a regular
bond. Technically, the reverse convertible in itself is not an exotic option
as the structure is nothing more than a bond plus a plain vanilla put
option. However, it is imperative to have a good understanding of the
reverse convertible in order to understand more exotic structures like
the autocallable. Moreover, there are many different iterations to the
reverse convertible which can turn a plain vanilla reverse convertible
into an exotic reverse convertible. For example, instead of a regular
reverse convertible where the investor buys a bond and sells an ‘at the
money’ put, the investor can decide to sell a down-and-in put which
gives the investor additional protection. Lastly, the reverse convertible
is an extremely popular bullish retail structure and whoever wants to
understand exotic options needs to be familiar with such an important
structure as the reverse convertible.

15.1 EXAMPLE: KNOCK-IN REVERSE CONVERTIBLE

A very popular iteration to the regular reverse convertible is a structure
where the investor buys a bond and sells a down-and-in put to enhance
the coupon on the whole structure – a knock-in reverse convertible. Sub-
section 10.1 shows that the seller of a down-and-in put enjoys additional
protection over the seller of an ‘at the money’ put. Because the investor
receives additional protection, the knock-in reverse convertible pays a
slightly lower coupon than the regular reverse convertible. Nonetheless,
the knock-in reverse convertible still pays a higher coupon than a regular
bond as a compensation for taking the risk of selling a down-and-in put.

Consider a 2 year knock-in reverse convertible on BMW where the
investor sells a 100/80 % down-and-in put to enhance the coupon on the
structure. In other words, the investor buys a 2 year bond and sells a 2 year
100/80 % down-and-in put and in return the investor receives a semi-
annual coupon. The investor buys the full knock-in reverse convertible
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structure at 100 %. That is to say, a knock-in reverse convertible works
along the same principles as a regular bond. Whoever buys the reverse
convertible pays the full notional up-front and throughout the life of
the reverse convertible the investor receives semi-annual coupons. In
order for the reverse convertible to work it is important that the notional
on the down-and-in put is the same as the notional on the bond. This
can be established by having the notional divided by the strike number
of down-and-in puts in the reverse convertible. This also ensures that
if the down-and-in put has knocked in and it is in the money at expiry,
the issuer of the reverse convertible can simply exercise the down-and-in
put for which the issuer should be getting paid an amount equal to the
notional that the issuer owes the investor already through the bond part
of the reverse convertible. Thus, if the issuer exercises the down-and-in
put there is no exchange of cash at expiry. This also shows that a reverse
convertible is not a riskless structure to the investor. If, for example,
BMW is trading at 70 % of its initial value, the buyer of the reverse
convertible loses 30 % of his invested notional as he receives shares,
through the assignment of the down-and-in put, that are worth 30 %
less. To summarise, at expiry there are three different payout scenarios:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

100 % in cash If BMW never < 80 % during the 2
year term of the knock-in reverse
convertible

100 % in cash If BMW at expiry > 100 % regardless
of whether BMW was ever < 80 %
during the 2 year term of the knock-in
reverse convertible

notional
strike number of shares If BMW ever < 80 % during the 2

year term of the knock-in reverse
convertible and BMW < 100 % at
expiry

In the third case, the buyer of the reverse convertible obviously loses
money. Instead of seeing his invested notional returned on the bond
he receives notional

strike number of BMW shares, which he effectively buys at
100 % and are worth less than 100 % at expiry. De facto the investor loses
the percentage decline of the BMW share price on the notional invested.
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15.2 PRICING THE KNOCK-IN REVERSE
CONVERTIBLE

Pricing a reverse convertible typically means that one solves for the
coupon that makes the value or re-offer of the reverse convertible 100 %.
Consider the two year 100/80 % knock-in reverse convertible on BMW
from sub-section 15.1. Suppose that the semi-annual coupon on a regular
bond is equal to 1.75 % and also that the interest rate is constant in every
maturity. Lastly, suppose that a 2 year 100/77 % down-and-in put on
BMW is worth 6.7 %. Note that the issuer would use a 3 % barrier shift
to price a 100/80 % down-and-in put, as discussed in Chapter 10. Now
it is easy to determine the semi-annual coupon that makes the knock-in
reverse convertible worth 100 %. Indeed, since the semi-annual coupon
on a regular bond is 1.75 %, the semi-annual discount factors to four
decimal places are:� the 6 month discount factor is 1

1.0175 = 0.9828� the 1 year discount factor is 1
(1.0175)2 = 0.9659� the 18 month discount factor is 1

(1.0175)3 = 0.9493� the 2 year discount factor is 1
(1.0175)4 = 0.9330

the semi-annual coupon, X , for the two year 100/80 % knock-in reverse
convertible on BMW can now be calculated as:

0.9828X + 0.9659X + 0.9493X + 0.9330X = 1 − (0.9330 − 0.067)

⇓
3.831X = 0.134

⇓
X = 0.035

In other words, a cash semi-annual coupon payment of 3.5 % makes the
2 year 100/80 % knock-in reverse convertible on BMW worth 100 %.

15.3 MARKET CONDITIONS FOR MOST
ATTRACTIVE COUPON

It is important to understand under which circumstances the coupon on
a reverse convertible looks the most attractive. In other words, during
which market conditions one can expect the highest demand for reverse
convertibles. There are two inputs that affect the coupon on a reverse
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convertible. The first one is the premium for the put or down-and-in
put. The higher the premium on the put or down-and-in put the higher
the coupon. The two main contributors to a higher put premium are
the implied volatility and the dividend yield. The higher the implied
volatility or dividend yield the higher the put premium. Secondly, the
lower the discount factors the higher the coupon. Discount factors have
an inverse relationship to the interest rate. Therefore, the higher the
interest rates the higher the coupon.1 To summarise, there are three
factors that impact the magnitude of the coupon:� The higher the interest rates the higher the coupon on the reverse

convertible.� The higher the implied volatility the higher the coupon on the reverse
convertible.� The higher the dividend yield the higher the coupon on the reverse
convertible.

15.4 HEDGING THE REVERSE CONVERTIBLE

Hedging a reverse convertible consists of two hedges. One is the volatil-
ity hedge and the second one is the interest rate hedge. There is no exact
volatility hedge for the down-and-in put. However, a good proxy hedge
does exist. For example, the two year 100/80 % down-and-in put on
BMW would typically be hedged with a two year 90 % plain vanilla put.
The reason that one would hedge the two year 100/80 % down-and-in
put with a downside put, i.e. 90 %, is because a down-and-in put is long
skew, which makes the effective implied volatility at which one buys
a 100/80 % down-and-in put higher than the ‘at the money’ implied
volatility. In order to hedge this effectively, the buyer of a down-and-in
put needs to sell some downside options for which he receives an implied
volatility that is slightly higher than the ‘at the money’ implied volatility.
The number of 2 year 90 % put options the buyer of the down-and-in
put needs to sell can easily be determined by the vega exposure on the
down-and-in put and solving for the number of 2 year 90 % puts that
flattens this vega exposure.

1 Higher interest rates have a dampening effect on the put premium. This is because a long put is hedged
by buying shares on which the owner of the put incurs financing. If the interest rates go up, the financing of the
hedge becomes more expensive and therefore the buyer is not prepared to pay as much for the put. Since an ‘at
the money’ put has a delta less than 1, higher interest rates have a bigger impact on the bond part than on the put
option part of the reverse convertible. Therefore, the result of higher interest rates is that the coupon looks more
attractive.
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Hedging any interest rate exposure on a reverse convertible is rather
simple. Suppose the issuer of a € 10 million 2 year 100/80 % reverse
convertible on BMW wants to hedge his interest rate exposure. Suppose
also that the delta on the down-and-in put is 0.4. This means that the
issuer will buy € 4 million worth of BMW stock on which he incurs
financing. On the € 10 million short bond he actually receives interest
and therefore the short bond and the delta hedge work in opposite di-
rections in terms of interest rate exposures. In other words, the issuer of
the reverse convertible is long floating interest rates on a notional of € 6
million. Since it is a 2 year reverse convertible, the issuer is exposed to
the 2 year part of the interest rate curve and will therefore enter into a
2 year swap where he pays floating and receives fixed on a notional of
€ 6 million in order to hedge his interest rate exposure.

DVO1, the price sensitivity of any structure to 1 basis point,2 bp,
change in yield curve (the annualised interest rate goes up by 1 bp
for every maturity), is typically used as an interest rate risk measure.
Since the issuer of the reverse convertible has a 2 year long interest
rate exposure and assuming an annual interest coupon payment, a 1 bp
increase for the 1 year maturity results in a 0.9659 of a bp profit and a 1
bp increase for the 2 year maturity results in a 0.9330 of a bp profit. This
means that the DVO1 for the issuer of the reverse convertible is equal to

€ 6 million × 0.9659 + 0.9330

10 000
= + € 1139.34

2 1 bp = 1
100 of 1 %.
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Autocallables

An autocallable is a note people can invest in that only pays a coupon
if the underlying index is above or below a certain level and the note
automatically redeems early if it breaches a second hurdle level, which
can be the same or different to the one that determines whether the
investor gets paid a coupon. The reason that the note redeems early is
that, once the underlying index reaches a certain level, the investor would
prefer to invest his money elsewhere rather than to hold his money in a
note that pays a fixed coupon, conditional on a certain level of underlying
index. To get an enhanced coupon the investor typically also sells an
option, which is then embedded in the note. The following sub-section
will give an example of an autocallable note.

16.1 EXAMPLE: AUTOCALLABLE REVERSE
CONVERTIBLE

Consider an investor who has a range bound view on BMW and believes
that in the next 2 years the stock will not drop below 90 % of its value
and will not get above 110 % of BMW’s current value. He also believes
that, if BMW does get above 110 % of its current value, it is a bullish
signal and would like to invest money in BMW stock. The autocallable
would be the perfect strategy for this investor, where the note autocalls
when BMW reaches 110 % of its current value so that he can invest
the money of the note in BMW stock directly. The note will pay a
semi-annual coupon for as long as BMW stock is not below 90 % of
its current value at these semi-annual observation points. Lastly, the
investor wants to enhance his coupon by selling a down-and-in put with
a strike of 100 % and a continuous barrier of 80 %, which means that his
investment is capital guaranteed provided BMW never drops by more
than 20 % at any time during the 2 year term of the note. By selling
this down-and-in put the investor manages to enhance his coupon to
a 4 % semi-annual coupon. Suppose this investor invests 10 million
euros in this autocallble reverse convertible. The exact terms of this
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note are as follows:� Coupons
– If at any semi-annual observation point, i , during the term of the note

BMWi > 90 % · BMW0,

the investor gets paid a coupon of 4 % on his investment at this
particular semi-annual observation point, i.e. 400 thousand euros.

– If at any semi-annual observation point

BMWi < 90 % · BMW0,

the investor does not get a coupon at this particular semi-annual
observation point.� Early redemption

– If at any of the first three semi-annual observation points

BMWi > 110 % · BMW0,

the note redeems early and the investor will get his full investment
back, i.e. 10 million euros. Because of this redemption the investor
obviously loses his right to coupon payments.� Redemption at maturity

– If BMW’s share price has never dropped below 80 % of its initial
value during the two year term of the note, the note redeems at
100 %, i.e. 10 million euros.

– If BMW’s share price has at any point during the 2 year term of the
note dipped below 80 % of its initial value, the note redeems at

100 % − max

[
BMW0 − BMWT

BMW0
, 0

]
.

It is not straightforward to see whether this conditional autocallable re-
verse convertible pays a higher or lower coupon than the regular reverse
convertible discussed in Chapter 15. On the one hand, the coupon of
the above autocallable is conditional and should therefore have a higher
coupon than the coupon of the regular reverse convertible, which is un-
conditional. On the other hand, the autocallable redeems early if, at one of
the semi-annual observation dates, BMW’s stock price is above 110 %, in
which case the trader loses a down-and-in put. This would have a damp-
ening effect on the coupon of the above autocallable. However, taking
both aspects into account one can assume that the contingency of the
coupon has a larger increasing impact on the coupon than the downward
pressure on the coupon from potentially losing the down-and-in put.
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16.2 PRICING THE AUTOCALLABLE

The pricing of the autocallable discussed in sub-section 16.1 is relatively
easy with the knowledge of digital and barrier options. After all, the
conditional coupons are nothing more than a strip of semi-annual 90 %
strike digital options which knock out at 110 %, and pay a coupon of
4 %. The early redemption feature can be priced by a worthless option
that knocks out at 110 % to then pay a rebate of 100 %. This worthless
option is typically taken to be a zero strike put. The barriers are only
live at the semi-annual observation dates. In other words, the barriers
can only be breached at these semi-annual observation dates. The entire
structure can therefore be priced as:� Coupons

– The trader sells a 1 time geared 86/90 % European call spread expir-
ing after six months with no knock-out feature, as the investor will
still get the 4 % coupon if the note knocks out at the first semi-annual
observation date.

Unlike the reverse convertible, this way of pricing the autocallable
reverse convertible does not assume that a coupon actually gets paid
out in cash at each semi-annual observation date, but is embedded
in the pricing of the call spread. The call spread is a conservative
way of pricing a digital option that gives a payout of 4 % if BMW’s
stock price is above 90 % and pays nothing if BMW’s stock price is
below 90 % at each semi-annual observation date.

– The trader sells a 1 time geared 86/90 % European call spread expir-
ing after one year, with a knock-out barrier of 110 %. The barrier is
live only at the first semi-annual date, as the coupon needs to be paid
at the second semi-annual observation date, regardless of whether
the structure knocks out at this date.

– The trader sells a 1 time geared 86/90 % European call spread
expiring after 1.5 years, with a knock-out barrier of 110 %. The
barrier is live only at the first and second semi-annual dates.

– The trader sells a 1 time geared 86/90 % European call spread
expiring after 2 years, with a knock-out barrier of 110 %. The
barrier is only live at the first three semi-annual dates. The barrier is
not live at the fourth semi-annual observation date because the note
can only redeem at the first three semi-annual observation dates.� Early redemption

– The trader sells a zero strike knock-out put with a barrier of 110 %
for the first three semi-annual dates and a 0 % barrier for the fourth
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semi-annual observation date. The knock-out put can only knock
out at one of the semi-annual observation dates and pays a rebate
of 100 %. The barrier for the fourth semi-annual observation date
ensures that the client sees his investment returned after the two year
period.� Financing through down-and-in put

– The trader buys a 100 % put knocking in at 80 % and knocking out
at 110 %. The reason that this option knocks out at 110 % is that the
down-and-in put is part of the reverse convertible autocallable note,
which knocks out at 110 %. Obviously the trader would price the
downside barrier with a barrier shift, i.e. pricing it as a 100 % put
with a 77 % knock in. It is important to recognise that the downside
barrier at 80 % can knock in continuously, i.e. throughout the full
life of the autocallable, whereas the upside barrier at 110 % can only
knock out at one of the three semi-annual observation dates.

When determining how to shift the barrier at 110 % for the different semi-
annual observation dates, one first has to realise that the different digital
options, the zero strike put and the down-and-in put are communicating
options when it comes to knocking out. The best way to see this is
to imagine BMW’s stock price at 109 % just before the third semi-
annual observation date. In other words, the autocallable note is close to
knocking out. In this case it could well be advantageous to the trader if the
structure knocks out. Firstly, this is because the down-and-in put is very
unlikely to knock in during the next 6 months, making the down-and-in
put almost worthless at that point. Secondly, if the structure knocks out at
the third semi-annual observation date, the trader will have to pay 100 %
6 months early, which works to his disadvantage. However, it would
also mean that he would not have to pay the fourth coupon, which works
to the trader’s advantage. Assuming that the rate of interest has not
moved, these two effects will work to the trader’s advantage, as the
coupon plus the present value of 100 % in 6 months is more than 100 %
now. This is because the coupon is artificially high as a result of the
financing through the down-and-in put within the note. Therefore, the
above shows that, if the the knock-in put is close to worthless and the
interest rate has been stable or has moved down, it is advantageous to
the trader if the note knocks out. In this case the trader obviously shifts
the barrier upwards. However, in most of the cases it is disadvantageous
to the trader if the note redeems early, as the consequence is that he loses
a down-and-in put which he has paid for and therefore shifts the barrier
downwards at the 110 % level.
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16.3 AUTOCALLABLE PRICING WITHOUT
CONDITIONAL COUPON

Another, and probably more common, class of autocallables is an auto-
callable where the coupon is unconditional but still autocalls at a certain
level. Typically, this autocallable with an unconditional coupon is struc-
tured such that the coupons are not paid running but only when the
structure knocks out, or if it never knocks out the coupons are paid at
maturity. Since the coupons are only paid at the observation dates when
the autocallable actually knocks out, the coupon that is paid at maturity
or when it autocalls is the number of observation dates till knock out
multiplied by the agreed coupon. The following example clarifies the
autocallable with unconditional coupon.

Consider the autocallable example in sub-section 16.2, only then the
coupon is paid regardless of any stock level. One would expect this
coupon to be lower than 4 % semi-annually. It would most likely also
be lower than the coupon of the regular reverse convertible, as there is
always the risk to the trader of losing the down-and-in put if the 110 %
barrier is breached. Assuming that the fair semi-annual coupon is 3 %
for this unconditional autocallable on BMW, the 2 year unconditional
autocallable on BMW would be structured as follows:� Early redemption plus coupons

– The trader sells a zero strike knock-out put with a barrier of 110 %
for the first three semi-annual dates and a 0 % barrier for the fourth
semi-annual observation date. The knock-out put can only knock
out at one of the semi-annual observation dates and pays a rebate of
1. The rebate at the first semi-annual observation date is 100 % plus

one times 3 %, equals a rebate of 103 %
2. The rebate at the second semi-annual observation date is 100 %

plus two times 3 %, equals a rebate of 106 %
3. The rebate at the third semi-annual observation date is 100 % plus

three times 3 %, equals a rebate of 109 %
4. The rebate at the fourth and last semi-annual observation date is

100 % plus four times 3 %, equals a rebate of 112 %
A barrier of 0 % for the fourth semi-annual observation date ensures
that the client sees his investment returned after the 2 year period.� Financing through down-and-in put

– The trader buys a 100 % put knocking in at 80 % and knocking out
at 110 %. The reason this option knocks out at 110 % is that the
down-and-in put is part of the reverse convertible autocallable note,
which knocks out at 110 %. Obviously the trader would price the
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downside barrier with a barrier shift, i.e. pricing it as a 100 % put
with a 77 % knock in. It is important to recognize that the downside
barrier at 80 % can knock in continuously, i.e. throughout the full
life of the autocallable, whereas the upside barrier at 110 % can only
knock out at one of the three semi-annual observation dates.

16.4 INTEREST/EQUITY CORRELATION WITHIN
THE AUTOCALLABLE

When pricing the autocallable in sub-section 16.2 there was no mention
of an interest/equity correlation. However, if one wants to price the
autocallable accurately this interest/equity correlation should be taken
into account. To see this, consider a purely anti-correlated interest/equity
correlation. In other words, there is a lognormal correlation of −1. This
obviously has an impact on the pricing of the autocallable. Indeed, in
this case BMW’s share price goes up whenever interest rates are going
down. This means that, when BMW’s share price reaches 110 %, the
interest rate is lower than at inception of the trade and it is therefore
more advantageous to the trader when the autocallable knocks out than
when interest rates have not moved at all.1 For that reason, the trader can
give a higher coupon when he takes this interest/equity correlation of
−1 into account. The opposite obviously holds when the interest/equity
correlation is perfectly correlated, i.e. 1.

The reason that no interest/equity correlation was taken into account
when pricing the autocallable in sub-section 16.2 is that this correlation
is very hard to measure and for short term maturities this correlation
always hovers around zero.2 For that reason traders typically price the
autocallable as in sub-section 16.2 and increase or lower the coupon
depending on their view on the interest/equity correlation during the
term of the note.

1 The reason that it is advantageous to the trader if the autocallable knocks out if interest rates are lower
is that the trader effectively borrows money through the autocallable and pays a fixed coupon for it. When the
structure knocks out and interest rates are lower he can refinance himself cheaper.

2 Over very long periods of time equity and interest rates have a negative correlation. However, over a 2 year
period, equity and interest rates might very well be positively correlated. For example, the start of a rate hike
cycle after a recession typically features both equity and interest rates going up.
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Callable and Puttable

Reverse Convertibles

A callable reverse convertible is a reverse convertible that can be called
by the issuer (the seller) at his choice at any of the pre-defined observation
dates during the term of the callable reverse convertible. This means that
the issuer holds an option as to whether he wants to keep the short reverse
convertible position till maturity or unwind it early at the observation date
of his choosing. Because the issuer has this additional option the buyer
of this callable reverse convertible is compensated by means of a higher
coupon than the coupon on a regular reverse convertible. The pricing
of such a callable reverse convertible can be seen as an optimisation
process of an unconditional autocallable, where the coupon is optimised
(maximised) versus the barrier level of this autocallable.

A puttable reverse convertible is the opposite of the callable reverse
convertible in the sense that it is not the issuer but the buyer who has
the choice of unwinding the reverse convertible early at the observation
date of his choosing. Again, the puttable can be priced as an optimi-
sation process of an autocallable. However, in this case the coupon is
minimised against the barrier level. The fact that the buyer can redeem
his investment plus a part of the coupons early, and therefore has access
to his capital earlier, results in a slightly lower coupon.

The next two sub-sections discuss the pricing of the callable and
puttable reverse convertibles in more detail.

17.1 PRICING THE CALLABLE REVERSE
CONVERTIBLE

Consider a 2 year callable reverse convertible on BMW which can be
called (unwound) by the issuer at any of the three semi-annual observa-
tion dates. The put within the reverse convertible that is used to enhance
the coupon is a 100 % put knocking in at 80 %. Chapter 15 showed that
a regular reverse convertible on BMW pays a semi-annual coupon of
3.5 % with a re-offer of 100 %. Therefore, one expects the callable re-
verse convertible to pay a semi-annual coupon of at least 3.5 %. In order

99
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to solve for the semi-annual coupon of this callable reverse convertible,
one prices this structure as an autocallable where the barrier levels at
the respective semi-annual observation dates are optimised to give the
largest coupon for a re-offer or fair value of 100 %. To begin with one
can start with a barrier level of 110 % for all the three semi-annual ob-
servation dates which, according to Chapter 16, sub-section 16.3, gives
a coupon of 3 %. Secondly, one can try to price an autocallable where
the first two observation dates have a barrier of 1000 %1 and the third
semi-annual observation date has a barrier of 104 %. This reverse con-
vertible autocallable appears to give a coupon of 3.65 % for a fair value
of the whole reverse convertible structure of 100 %. Proceeding in this
way one finds that the most optimal barrier levels at which the structure
autocalls are the following for the respective semi-annual observation
dates, and with this barrier structure the callable reverse convertible pays
a semi-annual coupon of 3.8 %:� The barrier for the first observation date, above which the structure

knocks out, is 120 %. This means that, if BMW’s share price is higher
than 120 % of its initial value at the first observation date, it is optimal
for the issuer of the callable reverse convertible to call the structure and
repay the buyer 103.8 %. The reason that it is optimal for the issuer to
call the full structure and repay 103.8 % is that the remaining value of
the down-and-in put has reduced so much that it is more economical to
pay the full 100 % early plus the first coupon of 3.8 % and give up the
down-and-in put than to keep the structure with the future liability to
pay three artificially high2 additional coupons but pay the full 100 %
in 1.5 years’ time.� The barrier for the second observation date, above which the structure
knocks out, is 112 %. This means that, if BMW’s share price is higher
than 112 % of its initial value at the second observation date, it is
optimal for the issuer of the callable reverse convertible to call the
structure and repay the buyer 107.6 %. The reason that it is optimal
for the issuer to call the full structure and repay 107.6 % is that the
remaining value of the down-and-in put has reduced so much that
it is more economical to pay the full 100 % early plus the first two
coupons of 3.8 % and give up the down-and-in put than to keep the
structure with the future liability to pay two artificially high additional
coupons but pay the full 100 % 1 year later.

1 Such a high barrier makes sure that it does not autocall on either of the first two observation dates. Therefore
it allows for the optimisation of the barrier on the third semi-annual observation date.

2 The coupons are artificially high as they are increased because of the initial value of the down-and-in put.
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� The barrier for the third observation date, above which the structure
knocks out, is 104 %. This means that, if BMW’s share price is higher
than 104 % of its initial value at the third observation date, it is optimal
for the issuer of the callable reverse convertible to call the structure and
repay the buyer 111.4 %. The reason that it is optimal for the issuer to
call the full structure and repay 111.4 % is that the remaining value of
the down-and-in put has reduced so much that it is more economical
to pay the full 100 % early plus the first three coupons of 3.8 % and
give up the down-and-in put than to keep the structure with the future
liability to pay one additional coupon but pay the full 100 % 6 months
later.

This means that the full callable reverse convertible can be priced as:� Early redemption plus coupons
– The trader sells a zero strike knock-out put with a barrier of 120 %,

112 % and 104 % for the first three semi-annual dates respectively
and a 0 % barrier for the fourth semi-annual observation date. The
knock-out put can only knock out at one of the semi-annual obser-
vation dates and pays a rebate of
1. The rebate at the first semi-annual observation date is 100 % plus

one times 3.8 %, equals a rebate of 103.8 %
2. The rebate at the second semi-annual observation date is 100 %

plus two times 3.8 %, equals a rebate of 107.6 %
3. The rebate at the third semi-annual observation date is 100 % plus

three times 3.8 %, equals a rebate of 111.4 %
4. The rebate at the fourth and last semi-annual observation date is

100 % plus four times 3.8 %, equals a rebate of 115.2 %
A barrier of 0 % for the fourth semi-annual observation date ensures
that the client sees his investment returned after the 2 year period.� Financing through down-and-in put

– The trader buys a 100 % put knocking in at 80 % and knocking out at
respectively 120 %, 112 % and 104 % for the first three semi-annual
observation dates. Obviously the trader would price the downside
barrier with a barrier shift, i.e. pricing it as a 100 % put with a 77 %
knock in. It is important to recognize that the downside barrier at
80 % can knock in continuously, i.e. throughout the full life of the
callable reverse convertible, whereas the upside barriers can only
knock out at one of the three semi-annual observation dates.

In pricing the callable reverse convertible it is important to recognise
two things. First of all the structure only knocks out if the share price
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is above a certain level. In other words, it is only optimal for the is-
suer to call the callable reverse convertible if the share price is above
a certain level. This is obvious, since the issuer of the callable reverse
convertible owns a down-and-in put that becomes more valuable when
the underlying share price is lower and it is therefore less economical
for the issuer to give up this down-and-in put. Secondly, one has to
observe that the process of finding the most optimal barriers at which
the issuer should call the callable reverse convertible is not a random
process based on trial and error but can be done in a systematic way
with the Newton–Raphson3 method, provided one starts to solve for the
optimal barrier with the penultimate observation date and works back-
wards to the first observation date. In the above example one would
use the Newton–Raphson to first find the optimal barrier for the third
semi-annual observation date, while keeping the barriers of the first two
semi-annual observation dates so high that the structure would never get
called on either of these first two observation dates. Knowing the op-
timal barrier for the third semi-annual observation date, one then goes
on to find the optimal barrier for the second semi-annual observation
date, again using a Newton–Raphson process. To be able to optimise
the barrier for the second semi-annual observation date one has to use
an unrealistically high barrier for the first semi-annual observation date.
Lastly, knowing the optimal barriers for both the third and second ob-
servation dates, one can finish by solving the optimal barrier for the first
semi-annual observation date using the same Newton–Raphson process.

17.2 PRICING THE PUTTABLE REVERSE
CONVERTIBLE

With the puttable reverse convertible it is the buyer who has the option
to unwind the reverse convertible early, in which case the buyer sees his
full investment plus a part of his coupons returned early.

Consider a 2 year puttable reverse convertible on BMW which can
be unwound by the buyer at any of the three semi-annual observation
dates. The put within the reverse convertible that is used to enhance
the coupon is a 100 % put knocking in at 80 %. Chapter 15 showed
that a regular reverse convertible on BMW pays a semi-annual coupon
of 3.5 % with a re-offer of 100 %. Therefore, one expects the puttable

3 The Newton–Raphson process solves for the barrier by decreasing the barrier until it gives a worse coupon
than the previous barrier and then subsequently halving the spread between these last two barriers. With this
process one can solve for the optimal barrier to any required accuracy.
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reverse convertible to pay a semi-annual coupon of less than 3.5 %.
In order to solve for the semi-annual coupon of this puttable reverse
convertible, one prices this structure as an autocallable where the barrier
levels at the respective semi-annual observation dates are optimised to
give the smallest coupon for a re-offer or fair value of 100 %. However,
in contrast to the callable reverse convertible, the barriers are not
breached if the stock price is above the barrier but when the stock
price is below the barrier. In other words, the barriers are down-
and-out rather than up-and-out. To begin with one can start with a
barrier level of 100 % for all the three semi-annual observation dates,
which appears to result in a coupon of 2.4 %. Secondly, one can try to
price an autocallable where the first two observation dates have a barrier
of 0 %4 and the third semi-annual observation date has a barrier of 90 %.
This reverse convertible autocallable appears to give a coupon of 2.2 %
for a fair value of the whole reverse convertible structure of 100 %.
Proceeding in this way one finds that the most optimal (lowest coupon)
barrier levels at which the structure autocalls are the following for the
respective semi-annual observation dates, and with this barrier structure
the puttable reverse convertible pays a semi-annual coupon of 2 %:� The barrier for the first observation date, below which the structure

knocks out, is 85 %. This means that, if BMW’s share price is lower
than 85 % of its initial value at the first observation date, it is optimal
for the buyer of the puttable reverse convertible to unwind the structure
and receive 102 % from the issuer. The reason that it is optimal for the
buyer to unwind the full structure and receive 102 % is that the value
of the down-and-in put is sufficiently large that it is more economical
to get paid the full 100 % early plus the first coupon of 2 % and lose
the short down-and-in put position than to keep the structure with
the prospect of receiving three additional coupons but receiving the
full 100 % 1.5 years later and having a potential liability on the short
down-and-in put.� The barrier for the second observation date, below which the structure
knocks out, is 87 %. This means that, if BMW’s share price is lower
than 87 % of its initial value at the second observation date, it is optimal
for the buyer of the puttable reverse convertible to unwind the structure
and receive 104 % from the issuer.� The barrier for the third observation date, below which the structure
knocks out, is 90 %. This means that, if BMW’s share price is lower

4 Such a low barrier allows for the optimisation of the third semi-annual observation date.
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than 90 % of its initial value at the third observation date, it is optimal
for the buyer of the puttable reverse convertible to unwind the structure
and receive 106 % from the issuer.

In other words, the full puttable reverse convertible can be priced as:� Early redemption plus coupons
– The trader sells a zero strike knock-out put with barriers of 85 %,

87 % and 90 % for the first three semi-annual dates respectively
and a 0 % barrier for the fourth semi-annual observation date. The
knock-out put can only knock out if BMW’s share price is below
the barrier level at one of the first three semi-annual observation
dates and if BMW’s share price is above the barrier at the fourth
(maturity) semi-annual observation date and pays a rebate of
1. The rebate at the first semi-annual observation date is 100 % plus

one times 2 %, equals a rebate of 102 %
2. The rebate at the second semi-annual observation date is 100 %

plus two times 2 %, equals a rebate of 104 %
3. The rebate at the third semi-annual observation date is 100 % plus

three times 2 %, equals a rebate of 106 %
4. The rebate at the fourth and last semi-annual observation date is

100 % plus four times 2 %, equals a rebate of 108 %
A barrier of 0 % for the fourth semi-annual observation date ensures
the client sees his investment returned after the 2 year period.� Financing through down-and-in put

– The trader buys a 100 % put knocking in at 80 % and knocking out
(down-and-out) at respectively 85 %, 87 % and 90 % if BMW’s share
price is below the barrier level at one of the first three semi-annual
observation dates. Obviously the trader would price the 80 % knock-
in barrier with a barrier shift, i.e. pricing it as a 100 % put with a
77 % knock in. It is important to recognize that the downside barrier
at 80 % can knock in continuously, i.e. throughout the full life of
the puttable reverse convertible, whereas the other three solved for
optimal barriers can only knock out at one of the three semi-annual
observation dates.
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Asian Options

Asian options are options whose strike price or settlement price1 does not
depend on one observation but on an average of observations. Therefore
there are two types of Asian options. The Asian out option is a European
option where the settlement price is determined by an average of the un-
derlying on a set of predetermined observation dates. This means that, at
expiry, the Asian out option pays the difference between the average of
the underlying (floating settlement price) on these predetermined obser-
vation dates and the fixed strike. The Asian in option is a European option
where the strike price is determined by an average of the underlying on
a set of predetermined observation dates. This means that, at expiry,
the Asian in option pays the difference between the underlying price at
expiry and the average of the underlying at these predetermined obser-
vation dates (floating strike). The next sub-sections discuss the pricing
and risk management of the Asian out and Asian in options respectively.

18.1 PRICING THE GEOMETRIC ASIAN OUT OPTION

Asian out options can be subdivided into a class where the average part
of the Asian options is geometric and one where the average part is
arithmetic. The price of an Asian out option where the average part is
geometric is easy to price, as the geometric average of a lognormally
distributed underlying has a lognormal distribution. Although Asian out
options with an arithmetic average part are more common, this sub-
section will first discuss geometric Asian out options. Understanding the
geometric Asian out option makes it easier to understand the workings
of an arithmetic Asian out option.

Consider a 1 year geometric average out Asian call option with
monthly observations and a strike price K on a stock St . This means

1 The settlement price is the share price against which an option settles, which, for a regular option, is the
share price at the close of business on the expiry day.
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that the payout at maturity of this Asian out call option, Cg
T , is:

Cg
T = max

[(
12∏

i=1

S
1

12

i

)
− K , 0

]
, (18.1)

where Si is the stock price of St at the end of the i-th month. Suppose
σi are the implied volatilities of Si with corresponding time units of
i/12-th of a year. And ri are the interest rates for the i-th month. Since
the correlation between σi and σi+1 is zero, one derives that
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This means that the geometric Asian out call option can be priced as a
call option on the process
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which has a a volatility of σ g
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The interest rate r g, which is effectively the financing of the hedge, for
pricing the geometric Asian out option is

r g = 1

12

12∑
i=1

ri . (18.6)

This means that the geometric Asian out option can be priced with the
Black–Scholes model using a volatility as in equation 18.5 and an interest
rate as in equation 18.6.

It is important to recognise that σi is always smaller than σi+1 and ri is
always smaller than ri+1. The longer the period over which the volatility
is measured the larger it gets, since any deviation in period i is auto-
matically in period i + 1. However, the annualised volatility of σi can
still be larger than the annualised volatility of σi+1. In other words, the
volatility of an average of observations is always smaller than the
volatility of the share price itself. Obviously, the more observations
the Asian option has, the smaller the implied volatility.2 This basi-
cally means that the price of a geometric average out option is always
smaller than the price of a regular option with the same maturity.3

18.2 PRICING THE ARITHMETIC ASIAN
OUT OPTION

Unlike the geometric Asian out option, the arithmetic mean of a log-
normally distributed underlying does not have a lognormal distribution.
However, one can use the geometric average as an estimate for the arith-
metic mean and hence get a good understanding of the Greeks and other
features of the arithmetic Asian out option. The actual pricing of the
arithmetic Asian out option would always be done with a Monte Carlo
process. For the sake of completeness, the payout at maturity for both
the arithmetic Asian out call and put are given in formulae 18.7 and 18.8

2 It is very important to distinguish between annualised implied volatility and the implied volatility associated
with the actual term of the option in this regard. The volatility or implied volatility as referred to in this section is
always the volatility associated with the actual term of the option and is therefore not expressed as an annualised
volatility.

3 There is a very special situation where the price of a geometric Asian out put is larger than the regular put
with the same maturity. This is when the interest rate is so large that the regular put is worth very little. Since
equation 18.6 shows that the interest rate for the geometric Asian out option is substantially smaller than the
interest rate of the regular put, this geometric Asian out put can be worth more, as the decrease in interest rate
has a bigger impact on the price than the decrease in volatility. A geometric average out call option is always
worth less than the regular call option with the same maturity.
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respectively.
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The reason one can use the geometric average as an estimate for the
arithmetic average is the Jensen inequality. Jensen’s inequality states

n
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This means that
∏n

i=1 (Si )
ai is a lower bound for

∑n
i=1 ai Si . Although

using the geometric average as an estimate for the arithmetic average
will not be helpful in accurately pricing the arithmetic Asian out option,
one can use this estimate to derive the dynamics of the Greeks and other
distinguishing features of the arithmetic Asian out option.

The following sub-section will discuss the delta hedging of the arith-
metic Asian out option from an economical perspective rather than a
mathematical perspective. The sub-section thereafter will discuss the
Greeks of the arithmetic Asian out option using the geometric average
as an estimate for the arithmetic average.

Before moving on to the Greeks it is important to observe that, just
like the geometric Asian option, the implied volatility of the arithmetic
Asian out option is smaller than the implied volatility of the regular
option with the same maturity. This can be seen by using the geometric
average as an estimate for the arithmetic average and hence deriving
formula 18.5. However, a more economic way to understand this is by
recognising that the duration of any arithmetic Asian option is smaller
than the duration of the regular option with the same maturity. The
following sub-section gives a more elaborate discussion on the duration
of an arithmetic Asian out option. Obviously, since the effective implied
volatility of an arithmetic Asian out option is smaller than the implied
volatility of the regular option with the same maturity, the Asian out
option is always worth less4 than the equivalent regular option.

4 Apart from the Asian out put option in a very high interest rate environment.
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18.3 DELTA HEDGING THE ARITHMETIC ASIAN
OUT OPTION

The best way to show the delta hedging of an arithmetic Asian out option
is by means of an example.

Consider a 3 month arithmetic Asian out call option on BMW with a
strike of € 40 and monthly observations. Suppose a trader sells this Asian
call on BMW to an investor. At inception the delta of the arithmetic Asian
out call option is very similar to the equivalent regular three month call
option. Assume that BMW’s stock price at inception is € 40 and hence
the delta for both the arithmetic Asian and the regular call option can be
assumed to be 1/2. This means that if the trader sells 90 thousand of these
Asian out call options, he will delta hedge himself by buying 45 thousand
BMW shares. Now suppose that, on the day before the observation date
of the first Asian setting, BMW stock is trading at € 48. In this case the
delta of the arithmetic Asian out call will be larger than the equivalent
regular call. This is for the simple reason that the first Asian setting will
almost certainly be in the money, i.e. higher than € 40. Suppose that
the Asian out call has a delta of 5/6, i.e. 75 thousand shares long, and
the equivalent regular call option has a delta of 3/4, i.e. 67.5 thousand
shares long. However, since the first Asian setting is assured to be in the
money, which accounts for 1/3 of the weight in the arithmetic average,
30 thousand shares of the 75 thousand shares serve as a delta hedge for
the first Asian setting. Once this Asian setting is taken the trader does
not need to hold these 30 thousand shares long any more and should
therefore sell them at the close of the first Asian setting. This means
that his delta hedge against the arithmetic Asian out call option after the
first Asian setting has reduced to 45 thousand shares. However, since
the first Asian setting has been taken, which accounts for 30 thousand
shares, the remaining arithmetic average is only on 60 thousand shares
and therefore the remaining Asian out call is effectively on 60 thousand
shares only. After the first Asian setting, BMW’s share price goes down
and, on the day before the second Asian setting, BMW stock is trading
at € 32. Therefore the delta the trader holds against the Asian call option
has decreased significantly to 10 thousand shares long. Since the second
Asian setting is pretty much assured to be out of the money, the delta the
trader holds is purely against the third Asian setting and nothing against
the second one. For that reason the trader does not need to do anything
on the close of the second Asian setting. On the day of the third Asian
setting, BMW stock is trading at € 42 and therefore in the money. This
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means that the trader holds a long position of 30 thousand shares as a
delta hedge. Obviously, the trader has to sell these shares at the close on
the day of the third Asian setting.

The above example clearly shows the procedure for hedging an arith-
metic Asian out option. On the day of an Asian setting, the trader
needs to unwind part of his delta hedge if the Asian setting is in the
money and does not need to do anything if the Asian setting is out of
the money. If the Asian setting is in the money, the trader needs to un-
wind as a share position the number of Asian options multiplied by
the weight of the setting. This also shows that the duration of an Asian
option is shorter than the equivalent regular option. Namely, on each of
the Asian settings the weight multiplied by the full size on the Asian out
position roles off. Effectively, an Asian option is spread out over a set of
regular options with maturities equal to the Asian setting dates. There-
fore the term of an Asian option cannot be compared to a regular option
with the same term but is in fact equivalent to a regular option with a
shorter term.5 For any option it holds that the longer the time to maturity
the higher the price. This once again makes clear that the price of an
Asian out option should be smaller than its equivalent regular option.

18.4 VEGA, GAMMA AND THETA OF THE
ARITHMETIC ASIAN OUT OPTION

Since sub-section 18.3 clearly shows that the duration of an Asian out
option is shorter than the maturity of the equivalent regular option, it is
easy to see that the Greeks of the Asian out option change accordingly.
This basically means that, compared to a regular option, an Asian out
option has a higher gamma and theta but a smaller vega. For example,
the risks and Greeks of a 1 year ‘at the money’ Asian out option with
monthly observations are very similar to the risks and Greeks of a 6
months ‘at the money’ option. Obviously, a 6 months ‘at the money’
option has in turn a higher gamma and theta than a 1 year ‘at the money’
option, but a smaller vega.

18.5 DELTA HEDGING THE ASIAN IN OPTION

It is not so much the pricing that makes the Asian in option interesting
but the delta hedging of it. Apart from some financing on the delta hedge,

5 The term of the equivalent regular option can be estimated to be the weighted average of the different
regular option with maturities equal to the Asian setting dates.
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the pricing of an Asian in option is really nothing more than the pricing
of a forward starting option as discussed in Chapter 11. Also the Greeks
of the Asian in option are the same as the Greeks of a forward starting
option.6 What is not obvious for an Asian in option is the delta hedging
up until the date on which the strike is fixed, according to the average
of the Asian in settings. That is exactly what will be discussed in this
sub-section for the arithmetic Asian in option.

Consider a trader who buys a 3 day Asian in put on BMW with a
maturity of 1 year from the date on which the strike price is fixed. The
stock has the following price trend over these 3 days:

1. € 30
2. € 20
3. € 10

The trader buys this Asian in option on a notional of € 9 million. On the
day of the first Asian in setting, the Asian in option is obviously an ‘at the
money’ put as the average over the first 1 day is equal to the share price.
Therefore, on the first day the trader assumes that the delta of the Asian
in option will be 0.5 (a 1 year ATM put has a delta of 0.5) and hedges
this by buying a third of € 4.5 million, i.e. 50 thousand shares of BMW.
On the second day, the average price over the first two days has fallen to
€ 25, but the current share price is at € 20 and is therefore already an in
the money put, namely the share price is 80 % of the strike. A one year
put on BMW that is 20 % in the money appears to have a delta of 0.6.
This means that with the current information the trader needs to be long
216 thousand shares on the third day, the day of the last Asian in setting.
This 216 thousand is derived from the fact that, given an average share
price of € 25, a notional of € 9 million and a delta of 0.6, the delta posi-
tion should be 0.6 ∗ 9 ∗ 106/25 = 216 thousand on the third day. Since
the trader has already bought 50 thousand shares on the first day he still
has to buy 166 thousand shares over two days. This means that his delta
hedge for the second Asian setting is 88 thousand shares. On the third
day, the average share price over the full three days has fallen to € 20.
Since the share price is at € 10, the put is 50 % in the money. A 1 year
50 % in the money put appears to have a delta of 80 %. This means that
the trader’s full delta hedge should be 0.8 ∗ 9 ∗ 106/20 = 360 thousand
shares. Since the trader has already bought 138 thousand shares in the

6 Buying an Asian in option also means buying gamma embedded in the Asian in part, which affects the
pricing of an Asian in option. This effect will be elaborated on in sub-section 18.6.
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Table 18.1 Hedging the Asian in put

Delta of 1 year
put with strike price

BMW share price for equal to the average of Number of shares
each Asian setting the preceding days bought as a hedge

Day 1 setting of € 30 0.5 Buy delta times a third of
9 ∗ 106 divided by the
average 1 day share price,
1/2 ∗ 1/3 ∗ 9 ∗ 106/30 = 50
thousand shares

Day 2 setting of € 20 0.6 Buy 1/2 of delta times 9 ∗ 106

divided by the average 2 day
share price minus the shares
bought on the first day,
1/2 ∗ (0.6 ∗ 9 ∗ 106/25 −
50 ∗ 103) = 88 thousand
shares

Day 3 setting of € 10 0.8 Buy delta times 9 ∗ 106 divided
by the average 3 day share
price minus the shares
bought on the first two days,
(0.8 ∗ 9 ∗ 106/20 − 116 ∗
103) = 222 thousand shares

first two days, he has to buy another 222 thousand shares of BMW
on the day of the last Asian in setting to be fully hedged. A summary
of the hedging process for this Asian in put option can be found in
Table 18.1.

18.6 ASIAN IN FORWARD

The Asian in forward is a very popular structure and is often used by
corporates to buy back their own stock. An Asian in forward is com-
posed of a long Asian in call and a short Asian in put, both of which
have the same observation dates serving as Asian in settings and both
expire on the last Asian in setting. In other words, the Asian in for-
ward expires on the very same day that the strike is set according to
the Asian in schedule. This means that, if BMW wants to repurchase
€ 900 million worth of its own stock over the next 30 days, it could
execute this by buying a 30 day Asian in call and selling a 30 day
Asian in put, where each Asian in setting has the same weight, 1/30.
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Executing this stock repurchase through an Asian in forward, rather
than buying the stock back in the market place, bears a significant
advantage for BMW. This is because there is hidden gamma embed-
ded in the Asian in forward. The investment bank that facilitates this
Asian in forward and is therefore buying the Asian in put and sell-
ing the Asian in call, can easily monetise this gamma. The embedded
gamma in this Asian in forward makes it an incredibly powerful struc-
ture and a very attractive solution to any corporate that wants to repur-
chase its own stock. The following example shows that an investment
bank does actually materialise a gain on the gamma within the Asian
in forward.

Suppose that BMW uses an Asian in forward to repurchase its own
stock, where each Asian in setting has the same weight. For the sake of
clarity it is assumed that BMW wants to buy back € 900 million worth
of stock in three days rather than 30 days. BMW stock has the following
price trend over the 3 days of the Asian in term:

1. € 30
2. € 20
3. € 10

Since BMW wants to buy € 900 million worth of stock at the average
3 day stock price, BMW expects to get delivered 45 million shares of
BMW on day 3 and pays € 20 for each share. This means that on the
third day BMW pays the investment bank € 900 million and in return
the investment bank delivers 45 million of BMW’s own shares. Since
the delta of the Asian in forward will be 1 on the day of the last Asian
in setting, i.e. the day the strike price is set, the investment bank needs
to make sure that it buys € 900 million worth of stock over the three
day Asian in term. This € 900 million worth of BMW stock is deter-
mined on the basis of a BMW share price that is equal to the 3 day
average BMW price. In other words the investment bank needs to have
a hedging scheme that makes sure it has accumulated 45 million stock
on the third day. This hedging scheme along with its economic implica-
tions can be summarised by Table 18.2. The table makes clear that the
investment bank does actually make money on the gamma embedded
in the Asian in forward, as the hedging scheme accumulates 45 mil-
lion shares over the course of three days, for which the investment bank
only pays € 780 million, after which it sells these 45 million shares for
€ 900 million to BMW itself. Thus, the fact that the share price moves
according to the prescribed price trend ensures that the investment bank
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Table 18.2 Hedging the Asian in forward

BMW share price for Number of shares Total cost of the hedge
each Asian setting bought as a hedge on each Asian setting day

Day 1 setting of € 30 Buy a third of 900 divided by
the average 1 day share price,
1/3 ∗ 900/30 = 10 million
shares

€ 300 million

Day 2 setting of € 20 Buy 1/2 of 900 divided by the
average 2 day share price
minus the shares bought on
the first day,
1/2 ∗ (900/25 − 10) = 13
million shares

€ 260 million

Day 3 setting of € 10 Buy 900 divided by the average
3 day share price minus the
shares bought on the first two
days, (900/20 − 23) = 22
million shares

€ 220 million

makes a profit of € 120 million. Since the Asian in forward fixes the
notional rather than the number of shares, the number of shares to be
delivered on the day of the last Asian setting is dependent on the av-
erage share price over the Asian in period. Since the average goes up
if the share price goes up, the investment bank buys fewer shares on
a day that the share price goes up and more shares on a day that the
share price goes down. This effectively means that the investment bank
buys shares low and sells them high, which is exactly the definition
of being long gamma. The investment bank will obviously compensate
BMW for the fact that the Asian in forward gives the investment bank
the opportunity to be long gamma and will therefore pay BMW a bet-
ter price for the Asian in forward. Obviously, the higher the volatility
of BMW the more the investment bank will pay BMW for this Asian
in forward.

18.7 PRICING THE ASIAN IN FORWARD

Pricing the Asian in forward is relatively benign and is typically done by
a Monte Carlo process where the main input is the volatility. Although a
Monte Carlo process can easily provide a price for the Asian in forward,
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this sub-section discusses the pricing from an economical perspective
and will therefore provide a better insight into the dynamics of the Asian
in forward. Sub-section 18.6 showed that the volatility of the underlying
strongly affects the price of the Asian in forward. The higher the under-
lying volatility the more an investment bank is prepared to pay for being
long the Asian in put and short the Asian in call. However, to recog-
nise another very important aspect that affects the price of the Asian in
forward, it is assumed that the volatility of the underlying is zero. In
this case the underlying price stays the same throughout the term of the
Asian in period and therefore the delta hedge that is executed on each
day is known upfront and the same is true for all Asian in settings. In this
case the price of the Asian in forward is very easy to determine. Namely,
the investment bank will only charge the corporate for the financing of
the delta hedge, because the investment bank will pay money on each
of the Asian setting days to purchase the shares but will only receive the
money from the corporate on the day of the last Asian in setting. This
basically means that the investment bank will lose interest over the term
of the Asian in settings and will charge that through to the corporate. To
quantify this better, consider the example where BMW wants to repur-
chase € 900 million of its own stock through a 30 day Asian in forward.
Since the volatility is assumed to be zero, the investment bank will hedge
itself on each day of an Asian in setting by buying € 30 million worth
of stock. This means that the investment bank will lose interest for 29
days on the first € 30 million plus for 28 days on the second € 30 mil-
lion plus . . . plus for 1 day on the penultimate € 30 million. Obviously
one can calculate the exact cost of this financing, but an easier method
is to say that the investment bank incurs financing for 29 days on half
the full notional, i.e. € 450 million. Assuming that the euro interest rate
is 0.03 per annum, one calculates that the investment bank will charge
BMW € 450 ∗ 0.03 ∗ 29/365 = 1.0875 million, which is equivalent to
1/2 ∗ 0.03 ∗ 29/365 = 0.1192 % of the full notional of € 900 million.
Obviously, since BMW’s share price does move, the investment bank,
depending on the volatility, might end up paying BMW for the Asian
in forward, as the structure makes the investment bank long gamma.
This effect can also be estimated when one knows the gamma on the
Asian in forward and by using the profit formula described in equation
2.3. Since the gamma is not constant this estimate will not be accu-
rate and hence a Monte Carlo process is needed to calculate the exact
price.
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18.8 ASIAN IN FORWARD WITH OPTIONAL
EARLY TERMINATION

The last interesting class of Asian option structures is the Asian in for-
ward with a clause that the buyer of the Asian in put, and therefore the
seller of the Asian in call, has the option to terminate early the Asian in
forward. In other words, the investment bank has the option to deliver
the shares early at the average share price up to the early termination
day. The reason that this is such a popular structure is that it gives the
investment bank additional optionality and therefore the corporate who
is looking to repurchase stock takes advantage of yet another gamma
feature that enhances the premium the corporate receives for buying
back stock. There are two ways of pricing this Asian in forward with
optional early termination. One can either price this is as a Monte Carlo
process or one can estimate the price by pricing the regular Asian in
forward and adding the price of an Asian in put to this. Although the
latter method will not give the exact price for the Asian in forward with
early termination, it is very useful in getting an intuitive feel for the
structure and what affects its price. Therefore this sub-section will first
discuss how to accurately estimate the price of the Asian in forward
with early termination, after which it will discuss the exact pricing of
the Asian in forward with optional early termination through the Monte
Carlo method.

Consider a 33 day Asian in forward on BMW on a notional of € 900
million. The buyer of the Asian in put, and therefore the seller of the
Asian in call, has the option to deliver € 900 million worth of BMW
shares early at any day after day 29, i.e. either day 30, 31 or day 32,
at the average share price up to that point. The investment bank would
obviously only choose to early terminate if the close on any of the 30th,
31st or 32nd days is lower than the average over respectively the first
30, 31 or 32 days. This means that, if the investment bank wants to early
terminate on the 30th day, it will buy all the remaining shares to be
able to deliver € 900 million worth of stock at the average of the first
30 days. Since the investment bank has the option to early terminate
and would only do that if the close on the 30th day is lower than the
average of the preceding 30 days, the investment bank is basically long
a 30 day Asian in put that expires on day 30. By exercising this Asian
in put, the investment bank must buy back the remaining shares that
would otherwise have been bought over the next 3 days. This means that
the notional on this put should be 3/33 times the notional on the full



JWBK097-18 JWBK097-DeWeert February 6, 2008 21:20 Char Count= 0

Asian Options 117

Asian in forward. Since the investment bank can also decide to early
terminate on the 31st or 32nd day, a lower estimate for the price of the
33 day Asian in forward with optional early termination from day 30 is
to price it as a 30 day Asian in forward on 30/33 times € 900 million
plus a 30 day Asian in put on 3/33 times € 900 million. Armed with
this intuition one can more easily understand how to price the Asian in
forward with optional early termination as a Monte Carlo process.

When pricing the Asian in forward with optional early termination
as a Monte Carlo process, it is important to realise that this is a Monte
Carlo process with certain conditions. As observed previously, the in-
vestment bank which is short the Asian in forward (long Asian in put
and short Asian in call) would early terminate on any of the days in
the early termination period if the prevailing stock price divided by the
average stock price up to that point was less than a certain constant.
This constant will always be less than 1, but to get the right price for the
Asian in forward with optional early termination, one has to optimise
this constant7 for each day in the early termination period, i.e. in the
example above one would need to optimise these constants for the 30th,
31st and 32nd days. The process of optimising these constants works
along the same lines as optimising the barriers for the callable reverse
convertible, see sub-section 17.1. One starts backwards and optimises
the constant for the last day while keeping the constants for the previous
days at zero to make sure that the structure has not been early termi-
nated. Subsequently, one works backwards to optimise the constant for
the preceding days. Once these constants on each day in the early ter-
mination period have been established by using the Newton–Raphson
method, one prices the Asian in forward with optional early termina-
tion as the following Monte Carlo process. Suppose that the optimised
constants are C0, C1 and C2 for respectively the 30th, 31st and 32nd
day.� For all paths where S30∑30

i=1
Si
30

≤ C0 the Monte Carlo process prices a

30 day Asian in forward on 30/33 of € 900 million and a 30 day
Asian in put on 3/33 of € 900 million.� For all paths where S30∑30

i=1
Si
30

> C0 and S31∑31
i=1

Si
31

≤ C1 the Monte Carlo

process prices a 31 day Asian in forward on 31/33 of € 900 million
and a 31 day Asian in put on 2/33 of € 900 million.

7 Note that this is a conservative estimate as it does not need to be a constant but can be any number associated
to any Monte Carlo path which optimises the price of the Asian in forward.
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� For all paths where S30∑30
i=1

Si
30

> C0 and S31∑31
i=1

Si
31

> C1 and S32∑32
i=1

Si
32

≤ C2

the Monte Carlo process prices a 32 day Asian in forward on 32/33
of € 900 million and a 32 day Asian in put on 1/33 of € 900 million.� For all paths where S30∑30

i=1
Si
30

> C0 and S31∑31
i=1

Si
31

> C1 and S32∑32
i=1

Si
32

> C2

the Monte Carlo process prices a 33 day Asian in forward on € 900
million.
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Quanto Options1

The quanto option is designed for investors who want to execute an
option strategy on a foreign stock but are only interested in the percentage
return of that strategy and want to get paid this return in their own
currency. The basic principle of a quanto option is that the exchange rate
will be fixed to the prevailing exchange rate at inception of the option
transaction and the payout of the quanto option will be this exchange
rate times the payout of the regular option.

Consider a US investor who is very bullish on the share price of BP
(British Petroleum). For that reason this US investor wants to buy an
ATM call option on BP expiring in one year. However, he does not want
to get his return in British pounds but in US dollars. Assume that BP’s
share price is £ 5, the exchange rate is currently 2 dollars per pound and
in one year’s time the share price is worth £ 5.50. The quanto ATM call
option will give the US investor a payout at maturity of $ 1 regardless of
the change in exchange rate. In other words, the investor would expect a
10 % return in US dollars on the USD notional2 amount he bought calls
on, since BP’s share price has increased by 10 %.

From the above example it is clear that it is relatively easy to structure
a quanto option, however it is much harder to see what effect it has on
how this option should be priced and what variables it depends on.

19.1 PRICING AND CORRELATION RISK OF
THE QUANTO OPTION

To see how the quanto option should be priced, two new variables have
to be introduced. The first variable is the correlation between BP’s stock
price and the foreign exchange, FX, rate. To get a better understanding
of how this correlation affects the price of a quanto call option, an in-
teresting question is whether the US investor, who is buying an ATM
USD quanto call, is short or long correlation. Here short correlation

1 Parts of this chapter have been previously published in de Weert, F. (2006) An Introduction to Options
Trading, John Wiley & Sons Ltd, Chichester. Reproduced with permission.

2 Notional is defined as the number of options times the strike price.
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means that the investor benefits (quanto option increases in value) if
the correlation goes down and loses if the correlation goes up. The
reverse holds for being long correlation. To answer this question, as-
sume the correlation is positive, which means that, if the British pound
gets more valuable against the US dollar, BP’s share price goes up.
Now, one can easily see that the investor is short correlation (selling
correlation). Because, if the British pound goes up, the correlation as-
pect causes the share price to go up and therefore the dollar increase
of a plain vanilla call option, which is effectively a quanto option with
zero correlation, is more than the dollar increase of the USD quanto
call option, which has a fixed exchange rate. A similar analysis shows
that, if the British pound goes down, the correlation aspect causes the
share price to go down and the combination of a lower share price and
a less valuable pound causes the dollar loss of a plain vanilla ATM
call option to be less than the dollar loss of an ATM USD quanto call
option. To put it differently, if the correlation goes down from for ex-
ample 1 to −1, the holder of a USD quanto call option benefits, since
he is better off holding a plain vanilla call3 option if the correlation
is 1 whereas if the correlation is −1 he is better off holding a USD
quanto call option. The above example shows that the holder of a USD
quanto call is short correlation. However, when extending this analysis
to a USD quanto put one finds that the holder of such an option is long
correlation.

The second variable is the FX volatility. For this variable it is less
obvious whether the US investor is long or short this FX volatility. At
this point it is good to introduce a model that describes the stock price
difference in US dollars for a small time interval. This model gives an
answer under which circumstances a quanto option is long or short FX
volatility and shows once more why the holder of a quanto call is short
correlation and the holder of a quanto put is long correlation.

The model most commonly used for modeling a share price on a non-
dividend paying stock is the Black–Scholes model which describes the
difference in stock price for a small time interval. The formula is as
follows.

d St

St
= rdt + σSdWt , (19.1)

3 A plain vanilla option is equivalent to a quanto option where the correlation between the exchange rate and
the stock price is zero. The only difference is that the quanto option is priced in the quanto currency and the plain
vanilla option in the share’s own currency. This means that to have an exact comparison one should have the FX
times as many quanto options as regular options.
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where� St is the stock price at time t .� r is the risk free interest rate.� d St is the change in stock price over time interval dt .� dt is a small time interval.� σS is the volatility of the stock price.� Wt is Brownian motion, which is a stochastic process characterised by
normally distributed intervals dt with a mean of 0 and a variance equal
to the length of the interval dt . Mathematically stated the intervals dt
have a distribution equal to N (0, dt).� dWt is a stochastic process with distribution N (0, dt).

For the purpose of understanding a quanto option, a similar model
to equation 19.1 is required which includes two additional variables,
namely the correlation, ρ, between the logarithm of the stock price and
the logarithm of the exchange rate and the FX volatility, σFX. However, it
is important to realise that this equation defines a new share, Ft , quoted
in the currency the option is quanto’d into rather than the share’s own
currency. Ft is defined in such a way that a regular dollar option on Ft

is in fact a quanto option on St
4

dFt

Ft
= (rlocal − ρσSσFX) dt + σSdWt , (19.2)

where� ρ is the correlation between the logarithm of the stock price and the
logarithm of the exchange rate, where the exchange rate is quoted as
number of dollars per pound. A positive correlation means that if the
pound increases in value the stock price goes up.� rlocal is the risk free interest rate of the stock’s own currency. In BP’s
case the rlocal is the risk free interest rate of the pound.

From this equation it is obvious that anyone who holds a quanto call
option benefits if the correlation decreases and the holder of a quanto

4 The quanto model described in equation 19.2 is intuitive as the volatility, σS , used to price the quanto option
should be same as the implied volatility of the underlying stock, since the exchange rate is fixed and therefore
the option payout depends solely on the actual movement of the stock. The interest rate or drift part is slightly
different as the delta hedge is affected, see sub-section 19.2, by exchange rate movements and therefore affects
the financing on the delta hedge. If for example the stock price doubles, this affects positively the financing on a
long call option (short shares at a higher stock level therefore receive more interest). However, if the correlation
between the stock and the exchange rate is such that a doubling in stock price results in a halving of the dollar
value against the pound, the hedge is unaffected and therefore has no impact on the financing of the delta hedge.
Therefore it is obvious that the financing part of the quanto stock model is adjusted by −ρσSσF X .
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put benefits if the correlation increases. Depending on the sign of the
correlation this formula also makes clear whether the holder of a quanto
option is long or short FX volatility. If the correlation is negative the
holder of a quanto call is long FX volatility and the holder of a quanto
put is short FX volatility. If the correlation is positive the holder of a
quanto call is short FX volatility and the holder of a quanto put is long
FX volatility. Knowing that the model for the change in stock price for
a USD stock with a dividend yield equal to d is

dFt

Ft
= (r$ − d) dt + σSdWt , (19.3)

shows that the price of a quanto option can be derived from a nor-
mal option by making an adjustment to the dividend yield of adding
r$ − rlocal + ρσSσFX to the dividend yield. In equation 19.3 r$ is the
USD risk free interest rate. This also shows that the main theme of a
quanto option is the difference in forward compared to a regular option.

19.2 HEDGING FX EXPOSURE ON
THE QUANTO OPTION

Hedging the FX exposure on the quanto option might not be very intuitive
but is very simple in practice. This is because the FX hedge is captured by
the delta hedge, which in turn is because the option notional in the local
currency keeps changing with the changing FX. Namely, the notional
of the quanto option is agreed in the quanto currency and therefore
the notional in the local currency changes whenever the FX changes.
This obviously implies that if the quanto currency halves in value with
respect to the local currency, the notional of the quanto option in the
local currency halves and therefore the trader needs to halve his delta
hedge even though the stock price might not have moved. The delta of the
quanto option can easily be determined with the help of equation 19.2,
the value of the stock in the local currency and the strike in the local
currency.

To show how the delta hedging of a quanto option works, which at the
same time captures the FX hedging of the quanto option, consider the
example in the introduction to this chapter. Suppose a trader sells this
ATM quanto call option on BP with a strike of $ 5 and on a notional of
10 million USD. Assuming that the parameters of equation 19.2 and a
stock value of 5 and strike price of 5 give this ATM option a delta of 0.5.
As it was assumed that the exchange rate was 2 dollars per pound, the
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trader would need to buy 2.5 million pounds worth of BP stock as his
delta hedge. Now suppose that USD halves with respect to GBP, which
means that the exchange rate goes to 4 dollars per pound. Just because
of this change in exchange rate and without the stock price moving, the
trader would need to change his delta hedge to being long 1.25 million
pounds worth of BP stock. The trader therefore needs to sell 1.25 million
pounds worth of BP stock as a result of the exchange rate moving.

The above shows that there is no need for a trader to put an FX hedge
in place for a quanto option. However, the trader would need to swap
out the FX on the premium received for the quanto option if he sold the
quanto option. This is because equation 19.2 prescribes financing in the
local currency. If the trader buys a quanto option he effectively ensures
financing in the local currency because he would first need to sell the
local currency to buy the quanto currency in order to pay for the quanto
option. Therefore the trader will only need to do an FX hedge if he sells
a quanto option, which is selling the quanto currency and buying the
local currency on the premium amount. This ensures financing in the
local currency.
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Composite Options1

The composite option is designed for investors who want to execute
an option strategy on a foreign stock but want to fix the strike in their
own currency and get the payout of this option in their own currency.
In contrast to the quanto option, where the holder gets a percentage
return regardless of the exchange rate, the holder of a composite option
has exposure to the exchange rate. One of the reasons that a composite
option is traded is to protect the value in their own currency on a foreign
investment. Consider the following example.

20.1 AN EXAMPLE OF THE COMPOSITE OPTION

A US investor owns stock in the British pharmaceutical Glaxo Smithk-
line (GSK). Assume that the current value of GSK is £ 13.00 and that
the exchange rate is 2 dollars per pound. This means that the dollar value
of one share is $ 26. To protect this holding he buys a one year ATM
composite put option on GSK. This means that the strike price of this
composite put option is equal to $ 26. Assume that after one year the
stock goes down to £ 11.00 and the exchange rate goes from 2 dol-
lars per pound to 1.5 dollars per pound (dollar increases in value). This
means that the dollar value of one GSK share has gone down from $ 26
to $ 16.5. However, because the strike price of the composite option is
fixed in dollars, the dollar loss on the shares is offset by the payout of the
composite put option, which is equal to the strike price ($ 26) minus the
new dollar value of one GSK share ($ 16.5). In summary, the holder of
a composite option wants to protect the share value in his own currency
to both exchange rate movements and movements in the stock price.

The best way to answer the question whether the holder of a com-
posite option is short or long correlation is to model the change in stock
price, for a small time interval, in the currency of the composite. In the
example above this would be the dollar. Using the same notation as in

1 Parts of this chapter have been previously published in de Weert, F. (2006) An Introduction to Options
Trading, John Wiley & Sons Ltd, Chichester. Reproduced with permission.
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Chapter 19, sub-section 19.1 the model looks as follows (see Appendix
A):

dFt

Ft
= rcompodt + σcompodWt , (20.1)

where

σ 2
compo = σ 2

S + 2ρσSσFX + σ 2
FX, (20.2)

and rcompo is the risk free interest rate of the composite currency.
This formula shows that the holder of a composite option is long

correlation and the main theme is the difference in implied volatility
compared to a regular option. Another way to visualise the USD com-
posite put on GSK is by comparing it to a regular $ 26 put option on the
GSK ADR.2

20.2 HEDGING FX EXPOSURE ON THE
COMPOSITE OPTION

If a trader sells the composite put option on GSK in the example of
sub-section 20.1, he obviously wants to delta hedge himself. Because
equation 20.1 describes a composite option on stock as a normal option
on a stock in the composite currency, a delta can easily be determined
by setting strikes and share price in the composite currency. However,
the trader can only execute his delta on the local stock, which is not
quoted in the composite currency. This means that, even if the trader
delta hedges himself, he will still have an FX risk, as the payout on the
composite option will be in the composite currency and his delta hedge
is in the local currency of the underlying stock. To illustrate this FX risk
consider the following.

Suppose the trader hedges the short composite put option on GSK by
just delta hedging. This means by the example of sub-section 20.1 that,
if the trader hedges the composite option on a δ = 1,3 he makes £ 2
(13 − 11) per composite option, which is worth $ 3 at maturity as it was
assumed that the dollar increases from $ 2 per pound to $ 1.5 per pound.

2 ADR stands for Amercian Depository Receipt and is nothing more than a USD quoted stock on a company
that has its main listing in a different country.

3 Using δ = 1 is just for argument’s sake. Normally the delta would be much smaller at inception of an option
trade and would converge towards one as the option becomes more in the money and gets closer to maturity.
Whether the profit on the hedge is equal to the loss on the option ultimately depends on the volatility of both the
stock and the FX, which is not taken into account in this example.
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As the dollar value of GSK goes from $ 26 to $ 16.5 during the term
of the option, the trader loses $ 9.5 on the composite option and only
makes $ 3 on his delta hedge. This obviously shows that just delta
hedging is not enough. The trader would need to buy dollars on the
notional of his delta hedge to be fully immune to all the risks of the
composite option on GSK. This means that, as an FX hedge, the trader
would sell £ 13 to receive $ 26 for every GSK share he shorted as
part of his delta at inception of the trade. At maturity the trader can
buy back these £ 13 for $ 19.5. The total profit on this FX hedge is
therefore $ 6.5, making the profit on both the FX hedge as well as the
delta hedge equal to $ 9.5, which is equal to the loss on the composite
option.

To summarise the hedging of the FX exposure on a composite option
one just needs to realise that if one sells stocks as a delta hedge, one needs
to also sell the currency the stock is quoted in and buy the composite
currency in the same notional as the delta hedge. If the delta hedge is to
buy stock, the FX hedge is to also buy the currency the stock is quoted in
and sell the composite currency in the same notional as the delta hedge.
Obviously the FX hedge is not static and should be adjusted along with
any delta adjustments. In other words, to be perfectly hedged against
both stock movements and FX movements one needs to have, at any
time, the same notional of FX hedge as delta hedge.

The above shows how to hedge the FX exposure of a composite option.
However, it did not take into account that one also needs to put an FX
hedge in place on the premium paid for the composite option at inception
of the trade. For the call option the FX hedge on the paid premium
works in the opposite direction to the FX hedge on the notional of the
delta hedge. For the put option the FX hedge on the paid premium
of the composite option works in the same direction as the FX hedge
on the notional of the delta hedge. Obviously, the reason that a trader
wants to hedge the FX exposure on the premium is that in order to
buy the composite option in the composite currency the trader would
first need to sell the local currency to buy the composite currency. This
effectively gives him an FX position which still needs to be hedged.
Counterintuitively, no FX hedge needs to be executed on the premium if
the trader sells a composite option, as the trader receives the premium in
the composite currency and the model used to determine the price and the
delta of the option is equation 20.1, which assumes financing in the
composite currency, i.e. USD in the above example. The only reason that
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Table 20.1 FX hedge on the composite option

FX hedge on premium
Position composite FX hedge on paid for composite option
option delta notional at inception of trade

Long composite call
option

Sell local currency to buy
composite currency

Buy local currency to sell
composite currency

Short composite call
option

Buy local currency to sell
composite currency

None

Long composite put
option

Buy local currency to sell
composite currency

Buy local currency to sell
composite currency

Short composite put
option

Sell local currency to buy
composite currency

None

the trader needs to execute an FX hedge on the premium paid if he buys
a composite option is to offset the FX he executes to actually be able to
buy the option and therefore ensure financing in the composite currency
as the model in equation 20.1 prescribes. Therefore the full FX hedge
can be summarised by Table 20.1.
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Outperformance Options

The outperformance option measures the outperformance, whether it be
on the upside or downside, of one stock against another and pays this
difference. Obviously, an outperformance option can also be structured
between two different assets, like a stock and the oil price, in which
case it measures the outperformance of the stock against the oil price.
The beauty of outperformance options is that their pricing and risks
look complicated but can easily be understood when comparing them
to a composite option. The next sub-section gives an example of an
outperformance option.

21.1 EXAMPLE OF AN OUTPERFORMANCE OPTION

Consider an investor who believes that BMW’s share price will outper-
form the share price of Volkswagen (VW) in the next year. Therefore he
buys a 1 year outperformance option on BMW versus VW. Suppose that
BMW’s share price is € 40 and VW’s share price is € 70. The investor
decides to buy this outperformance of BMW versus VW on a notional
of € 7 million. To demonstrate the payoff of this option two different
price trends are considered. First, assume that in 1 year BMW’s share
price will be trading at € 50 and VW’s share price at € 63. In this case
the payout on the outperformance option should be 35 % of € 7 million,
as BMW went up 25 % and VW went down 10 % and therefore BMW
outperformed VW by 35 %. Secondly, assume that in 1 year BMW’s
share price is at € 50 and the share price of VW is at € 91. In this case
the payout on the outperformance option is zero as VW outperformed
BMW by 10 %.

Another way to think about the payout of the outperformance option is
to say that the holder of the outperformance option gets paid the greater
of zero and the notional growth of BMW shares minus the notional
growth/decline of VW shares. Viewing it like this makes it intuitive that
the outperformance option is nothing more than a composite option,
because the payout of a composite call option in the currency of the
underlying stock is equal to the notional growth of the share minus the

129
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notional growth/decline of the composite currency, quoted in the local
currency. So, if one views a currency as an asset that is quoted in the
currency of the underlying stock of a composite option, one sees that
the definition of the composite option and the outperformance option
are exactly equivalent. In other words, a composite option is a type of
outperformance option where the performance of the stock is measured
against a specific currency.

Another way to look at the outperformance option on two stocks is
to say that one is allowed to swap the stock the investor thinks will
underperform for the other stock in the ratio of the two stock prices at
inception of the trade.

21.2 OUTPERFORMANCE OPTION DESCRIBED
AS A COMPOSITE OPTION

Sub-section 21.1 made clear that an outperformance option is nothing
more than a composite option. Although this is the case, it might not
be easy to see how this translates into a comparison between the actual
outperformance option where the strike is defined and a composite op-
tion. This is because with a composite option one is only interested in
the payout of the option in the composite currency, and to compare the
outperformance option with the composite option one needs to convert
this payout to the currency of the underlying stock.

Before actually going into the pricing of an outperformance option it
is good to first clearly state the payoff at time t for an outperformance
option on BMW, BMWt , versus VW, VWt . This payoff is the following

Cout
t = max

[(
BMWt

BMW0
− VWt

VW 0

)
, 0

]
· N , (21.1)

where N is the notional of the outperformance option, which was taken
to be 7 million. By multiplying equation 21.1 by

BMW0

VWt
· VWt

BMW0

equation 21.1 can be rewritten as

Cout
t = max

[(
BMWt

VWt
− BMW0

VW0

)
, 0

]
· VWt · N

BMW0
. (21.2)
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To see how a price for Cout
t can be determined, one just has to be able to

price

Cout,VW
t = max

[(
BMWt

VWt
− BMW0

VW0

)
, 0

]
. (21.3)

However, closer investigation of equation 21.3 gives that Cout,VW
t ex-

presses nothing more than a call option on BMW where the payout is in
a different currency. The currency is obviously one VW share. In this
currency the value of one BMW share at time t is BMWt

VWt
, and as the initial

value of a BMW share in the VW currency is BMW0
VW0

one sees that equation
21.3 is the payoff of an ATM call option on BMW in the VW currency.
In turn, equation 21.3 can be viewed as a call option on a newly defined
stock Ft = BMWt

VWt
, which according to Appendix A can be described by

the following process

dFt

Ft
= σoutdWt , (21.4)

where

σ 2
out = σ 2

BMW + σ 2
VW − 2ρσBMWσVW. (21.5)

The Black–Scholes formula gives a price for a call option on a process
Ft , which is defined by equations 21.4 and 21.5, and has a strike price F0.

What makes it difficult to compare the outperformance option with the
composite option is that with the composite option one is only interested
in the value of the composite option in the composite currency, whereas
with the outperformance option one has to convert the price of the option
in the currency of VW back into a sensible euro price. In other words, in
the case of the outperformance option on BMW versus VW, one needs
to multiply Cout,VW

t by VWt to get the actual value of the outperformance
option on BMW versus VW. Multiplying this by the number of options,
N/BMW0, one exactly gets the payoff of the outperformance option as
described by equation 21.2.

21.3 CORRELATION POSITION OF THE
OUTPERFORMANCE OPTION

Equation 21.5 makes clear that the owner of an outperformance op-
tion has a short position in the correlation between the two assets.
In other words, the more inversely correlated the two stocks in the
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outperformance option are, the more valuable is this outperformance op-
tion. This is intuitive as the holder of an outperformance option stands to
receive the highest payout if the two stocks move in opposite directions,
i.e. the outperforming stock moves up and the other stock moves down.

21.4 HEDGING OF OUTPERFORMANCE OPTIONS

Delta hedging the outperformance option is very similar to the hedging of
the composite option. Firstly, one can easily find a delta on the composite
BMW call in the VW currency, as described by equation 21.4. So, if a
trader is long a BMW outperformance option versus VW, he is basically
long a composite call option on BMW in the VW currency on a notional
that is equal to VWt · N

BMW0
. The parameters of equation 21.4 provide a

delta, δout, from which he can calculate the euro notional of BMW he
would need to sell

δout · VWt · N
BMW0

BMWt
. (21.6)

According to Table 20.1 the trader would then need to buy the VW
currency in the same notional as his delta hedge on BMW. Buying the
VW currency obviously means that the trader needs to buy VW shares
and is therefore effectively paying (selling) euros in the same notional
as his delta hedge on BMW. However, the hedge on the premium paid
for the outperformance option works differently to the hedge for the
composite option. Equation 21.4 shows that the financing of the out-
performance option should be flat, which means that the dollar amount

Table 21.1 Hedges on the outperformance option and net euro cash flow

Security Amount bought or sold Euro cash flow

Outperformance option 1 −Cout,VW
T · VWt · N

BMW0

BMW share −
δout · VWt · N

BMW0

BMWt
+δout · VWt · N

BMW0

VW share +
δout · VWt · N

BMW0

VWt
−δout · VWt · N

BMW0

VW share −
Cout,VW

T · VWt · N
BMW0

VWt
Cout,VW

T · VWt · N

BMW0

Net cash flow 0
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spent and received should be the same. This means that to hedge this
outperformance option fully the trader would also need to buy euros
to sell the VW currency on the premium paid for the outperformance
option. In other words, sell VW shares and therefore buy euros on the
premium paid for the outperformance option. Table 21.1 summarises
the full hedge of the ourperformance option on BMW over VW and
also shows that the actual cash euro value adds up to zero. Obviously,
when hedging an outperformance option, a trader would always net out
the two hedges on VW in Table 21.1. In Table 21.1 the two hedges on
VW are shown separately for the sake of clarity, as each line serves a
different aspect of the hedge of the outperformance option.
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Best of and Worst of Options

The best of option is an option where the investor receives the gain
on the best performing stock among a predefined number of stocks.
In other words, the investor is long a call on the best performing stock
among the predefined number of stocks. The worst of option is an option
where the investor is long a put on the worst performing stock amongst a
predefined number of stocks. The pricing of either the best of or the worst
of option is typically done by using a Monte Carlo process. There is even
a closed form solution for the best of and worst of options. However,
since both the best of and worst of options are, in practice, always priced
as a Monte Carlo process, this section focuses on explaining the risks
associated with such options. The main risk of either a best of or a worst
of option is the correlation between the underlying assets on which the
best of or worst of option is based. Luckily, the correlation risk can be
easily derived from an outperformance option.

22.1 CORRELATION RISK FOR THE BEST OF OPTION

Consider an investor who buys a best of option between VW and BMW
expiring in 1 year. This means that after 1 year the investor gets paid
the greater of the percentage gain in VW and BMW. In other words
the investor is long a call option on either VW or BMW, whichever has
performed better after one year. Mathematically, the payoff at maturity
looks like this:

CBest of VW/BMW
T = max

[
VWT − VW0

VW0
,

BMWT − BMW0

BMW0
, 0

]
. (22.1)

The best way to understand the correlation risk embedded in this best
of option is to view this option as an ‘at the money’ call on VW plus
an outperformance option of BMW over VW. Unfortunately this rep-
resentation is only equal to the best of option under the condition that
if VW is down after 1 year it has at least outperformed BMW. In other
words, if VW is lower after one year and BMW has outperformed VW,
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the representation of an ‘at the money’ call on VW plus an outperfor-
mance option of BMW over VW gives a payout, whereas the best of
option does not give a payout at all. Nonetheless, this representation
proves very useful in determining whether the seller of a best of option
is long or short correlation. Mathematically, the representation of an ‘at
the money’ call on VW plus an outperformance option on BMW over
VW looks like this

CBest of VW/BMW
T = max

[
VWT − VW0

VW0
,

BMWT − BMW0

BMW0
, 0

]
≤ max

[
VWT − VW0

VW0
, 0

]
+ max

[(
BMWT

VWT
− BMW0

VW0

)
, 0

]
. (22.2)

Whereas the payoff of an ‘at the money’ call on VW plus an outper-
formance option of BMW over VW is greater than the best of option
of BMW and VW, the payoff of a long ‘at the money’ forward on VW
plus an outperformance option on BMW over VW is smaller than the
payoff of the best of option between BMW and VW. Mathematically,
the payoff of the best of option is therefore encapsulated by these two
representations and looks like this

max

[
VWT − VW0

VW0
, 0

]
− max

[
VW0 − VWT

VW0
, 0

]
+ max

[(
BMWT

VWT
− BMW0

VW0

)
, 0

]
≤ CBest of VW/BMW

T

≤ max

[
VWT − VW0

VW0
, 0

]
+ max

[(
BMWT

VWT
− BMW0

VW0

)
, 0

]
.

(22.3)

Since any outperformance option is short correlation, each side of in-
equality 22.3 is short correlation. The first term in formula 22.3 at a
correlation of −1 is greater than the third term at a correlation of 1. Also
at a correlation of −1, CBest of VW/BMW

T is equal to the first term in formula
22.3. At a correlation between BMW and VW of 1, CBest of VW/BMW

T is
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equal to the third term of formula 22.3. This means that the value of
CBest of VW/BMW

T increases as the correlation goes down. Hence, the holder
of a best of option is short correlation. In other words, the lower the
correlation between the constituents of a best of option, the higher the
value of this best of option.

22.2 CORRELATION RISK FOR THE WORST
OF OPTION

Consider an investor who buys a worst of option between VW and BMW
expiring in 1 year. This means that after 1 year the investor gets paid
the greater of the percentage decline in VW and BMW. In other words
the investor is long a put option on either VW or BMW, whichever has
performed worse after one year. Mathematically, the payoff at maturity
looks like this:

CWorst of VW/BMW
T = max

[
VW0 − VWT

VW0
,

BMW0 − BMWT

BMW0
, 0

]
.

(22.4)

To determine the correlation risk associated with a worst of option, the
same analysis as in sub-section 22.1 is needed. The payoff of the worst
of option has a lower bound equal to a short forward position in VW plus
an outperformance option of VW over BMW and an upper bound equal
to a long ‘at the money’ put position plus an outperformance option of
VW over BMW. Mathematically this can be presented as

max

[
VW0 − VWT

VW0
, 0

]
− max

[
VWT − VW0

VW0
, 0

]
+ max

[(
VWT

BMWT
− VW0

BMW0

)
, 0

]
≤ Cworst of VW/BMW

T

≤ max

[
VW0 − VWT

VW0
, 0

]
+ max

[(
VWT

BMWT
− VW0

BMW0

)
, 0

]
.

(22.5)

Again, the first term in formula 22.5 at a correlation of −1 is greater
than the third term at a correlation of 1. Also at a correlation of −1,
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CWorst of VW/BMW
T is equal to the first term in formula 22.5. At a correlation

between BMW and VW of 1, CWorst of VW/BMW
T is equal to the third term

of formula 22.5. This means that the value of CWorst of VW/BMW
T increases

as the correlation goes down. Hence, the holder of a worst of option is
also short correlation. In other words, the lower the correlation between
the constituents of a worst of option, the higher the value of this worst
of option.

22.3 HYBRIDS

Although hybrids have not explicitly been discussed so far, the main
products used to create a hybrid have already been discussed. It is im-
portant to understand that hybrids in themselves are not exotic but it is the
product that can comprise underlyings from different asset classes that
makes a structure exotic. For example, the best of and worst of options do
not necessarily have to compare the performances of underlyings from
the same asset class, but can also compare performances from different
asset classes. The same holds true for the outperformance option and
even the basket option, which will be discussed in Chapter 24.
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Variance Swaps

In recent years variance swaps have become increasingly popular as they
are a better way to express a view on the volatility of an underlying stock
or index than regular options. When betting on the volatility of a certain
underlying, options have the disadvantage of having vega and gamma
exposures concentrated around the strike price of the option. This means
that, if the stock price moves away from the strike price during the term
of the option, any movement in the underlying is irrelevant with respect
to the profit of that option and, because the vega has disappeared as
well, changes in implied volatility do not influence the profitability of
that option either. Therefore, executing a pure bet on the volatility of an
underlying through options is far from perfect because one can be right
on the volatility of the underlying during the whole term of the option and
still lose money. For example, a trader wants to take advantage of cheap
volatility by buying an option but the stock drifts away from the strike in
a very unvolatile manner after which it becomes very volatile, bringing
the realised volatility of the option during the term of the option far above
the implied volatility for which the trader initially bought his option. In
this case the trader obviously loses money despite being right on the
volatility. To get around this local characteristic of volatility exposure
for options, variance swaps were introduced.

A variance swap is a contract that pays the difference between the
annualised variance of an underlying and the annualised variance strike
agreed upon at inception of the trade. Its payoff at maturity is equal to(

σ 2
R − σ 2

K

) × N , (23.1)

where� σR is the annualised realised volatility during the term of the variance
swap;� σ 2

R is the annualised realised variance during the term of the variance
swap;� σK is the annualised volatility strike;
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� σ 2
K is the annualised variance strike;� N is the notional of the variance swap, also called variance notional,

in euros per annualised volatility point squared.

As with any swap the cash flow at inception is zero. In other words,
when pricing a variance swap one solves for variance strike, σ 2

K , that
makes the expected payoff of the swap at maturity zero.

The following sub-sections will show how to replicate a variance
swap with options and how it can be shown that, at any moment, the
vega is constant in stock price and decreases linearly over time and
the gamma of a variance swap is constant over time and although the
gamma is not constant in stock price the gamma cash is. This is in
stark contrast to the concentrated gamma around the strike of a single
option.

23.1 VARIANCE SWAP PAYOFF EXAMPLE

Suppose a trader has sold a 1 year variance swap on BMW at an implied
volatility level of 20 % and on a notional of € 5 million. After 1 year the
realised volatility appears to have been 18 %. In this case the trader will
receive an amount equal to

−(0.182 − 0.202) ∗ 5 000 000 = 38 000. (23.2)

23.2 REPLICATING THE VARIANCE SWAP
WITH OPTIONS

The variance swap can be understood more easily by replicating it with
options. In this sub-section it will be shown that a portfolio of options
consisting of 1/K 2 options of each strike replicates the payoff profile of a
variance swap to a factor 2/T . In other words, multiplying this portfolio
by 2/T exactly gives the payoff of the variance swap.1

Consider a portfolio of options �(St ) where each strike has a weight-
ing of 1/K 2. Since out of the money options are most liquid, all the
options in the portfolio with a strike lower than the cutoff point Sc are
put options and the options in �(St ) with strikes larger than Sc are call
options. Sc will be around the ‘at the money’ level. At expiration, T ,

1 The following proof is based on the publication More Than You Ever Wanted To Know About Volatility
Swaps (Demterfi et al., 1999).
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Appendix B proves that the value of this portfolio �(ST ) is:

� (ST ) =
∫ Sc

0

1

K 2
max [K − ST , 0] dk +

∫ ∞

Sc

1

K 2
max [ST − K , 0] dk

= ST − Sc

Sc
− ln

(
ST

Sc

)
. (23.3)

Appendix B also shows that the value of the portfolio � for any time t
is equal to2

� (St ) =
∫ Sc

0

1

K 2

[
K e−r (T −t) N (−d2) − St N (−d1)

]
dk

+
∫ ∞

Sc

1

K 2

[
St N (d1) − K e−r (T −t) N (d2)

]
dk

= St − Sc

Sc
− ln

(
St

Sc

)
+ σ 2(T − t)

2
, (23.4)

where σ is the implied volatility expressed annually and is assumed to
be the same for all different strikes. Because of the existence of skew
this is not the case in practice, which will be elaborated on in sub-section
23.8. The variance exposure of �(St ) can be obtained by differentiating
equation 23.4 with respect to σ 2. This gives the variance exposure ϕ as

ϕ = ∂� (St )

∂σ 2
= T − t

2
. (23.5)

Equation 23.5 already shows that the variance exposure of the portfolio
�(St ) is constant and independent of the stock price. However, to make
sure that the variance exposure at inception, i.e. t = 0, is equal to € 1
per volatility point squared, one needs to have a quantity of 2/T of the
portfolio �(St ). Equation 23.4 makes it easy to prove that

2

T
�(St ) = 2

T

[
St − Sc

Sc
− ln

(
St

Sc

)]
+ σ 2(T − t)

T
(23.6)

does indeed replicate the payoff of a variance swap. Indeed, if a trader
buys 2/T of �(St ) at t = 0 the fair value is

2

T
�(S0) = 2

T

[
S0 − Sc

Sc
− ln

(
S0

Sc

)]
+ σ 2.

2 This can be shown by integrating over K the value of the 1/K 2 put option from 0 to Sc plus integrating
over K the value of the 1/K 2 call option from Sc to infinity.
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If the trader delta hedges the above portfolio perfectly and, over the term
of the options in the portfolio, the annualised realised volatility appears
to be σR , the real value of 2�(S0)/T is

2

T
�(S0) = 2

T

[
S0 − Sc

Sc
− ln

(
S0

Sc

)]
+ σ 2

R. (23.7)

This means that the trader’s payoff at maturity is equal to

σ 2
R − σ 2. (23.8)

Expression 23.8 is exactly the payoff formula for a variance swap when
σK is equal to the implied volatility, σ , of the individual options in the
portfolio, which was assumed to be constant for all different strikes.
Since the implied volatility is the trader’s best estimate of the future
realised volatility, the implied volatility should be taken as the fair vari-
ance strike. Another way of putting it is that, if σK is equal to the implied
volatility, σ , the variance swap can be replicated by 2/(T · K 2) number
of options per strike.

23.3 GREEKS OF THE VARIANCE SWAP

The Greeks of the variance swap can easily be derived from equation
23.6. Since equation 23.7 assumes that all the options in portfolio �(St )
are being delta hedged, the delta of the variance swap cannot be de-
rived from equation 23.6. However, assuming that the implied volatility
is constant in strike, the delta of a variance swap is obviously zero
as the variance payoff is independent of stock price. The fact that a
variance swap does have a so-called skew delta will be discussed in
sub-section 23.8.

To get to the expressions for vega, gamma and theta of a variance swap
one just has to differentiate equation 23.6 to its respective variables.

The sensitivity of a variance swap with respect to the implied volatility,
i.e. the vega, ν, of a variance swap is

ν = ∂
[

2
T �(St )

]
∂σ

= 2 · σ (T − t)

T
. (23.9)

Equation 23.9 shows that the vega of a long variance swap position is
always positive, but also that the vega changes with the changing implied
volatility. The speed at which the vega changes with the changing implied
volatility can be derived by taking the derivative of ν with respect to
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σ . The fact that the vega is not constant in implied volatility is called
convexity and is elaborated on in sub-section 23.9.

The exposure, φ, of a variance swap to variance, σ 2, is equal to

φ = ∂
[

2
T �(St )

]
∂σ 2

= T − t

T
. (23.10)

Equation 23.10 shows that the variance exposure of a variance swap
decreases linearly over time and is zero at maturity and 1 at t = 0.

The sensitivity of a variance swap with respect to time, i.e. the time
decay or theta, θ , of a variance swap is

θ = ∂
[

2
T �(St )

]
∂t

= −σ 2

T
(23.11)

Equation 23.11 shows that the time decay of the variance swap stays
constant over time. Also, the theta of a variance swap is linearly depen-
dent on the variance. This means that the cumulative theta at expiration
is equal to the full variance. This is what one would expect since it shows
that, if the stock does not move during the term of the variance swap,
the seller of this variance swap will collect the full variance strike level
times the variance notional, N .

The rate of change of the delta of the variance swap with respect to
the stock price, i.e. the gamma of the variance swap, is equal to

γ = ∂2
[

2
T �(St )

]
∂2St

= 2

T · S2
t

(23.12)

Equation 23.12 shows that the gamma of a variance swap is constant
through time. It also shows that gamma is not constant in stock price.
However, gamma cash, which is defined as γ · S2

t /100 (see equation 4.2),
is constant in both stock price and time. The fact that gamma cash is
constant through time and in stock price means that the profit on
a given percentage move for a long variance position is always the
same regardless of the stock price or when the move occurs. This is
an important difference from a single option, where both the stock
price and the time that a move occurs matter significantly for the
profit on a move of a long option position. Indeed, if the stock price
is close to the strike price and the option is close to expiration, the
profit on a move is far greater than when the option has a long
time to maturity or when the stock price is not close to the strike
price.
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One would expect that the profit formula, as derived in Chapter 3, also
holds for variance swaps. This can be seen by substituting equation 23.11
for theta and equation 23.12 for gamma into the following formula.

1

2
γ σ 2S2

t + θ = 0. (23.13)

23.4 MYSTERY OF GAMMA WITHOUT DELTA

It is paradoxical that a variance swap does not have a delta where it does
have gamma on it. The reason is that a variance swap does accumulate
delta cash in between the time intervals over which the volatility is
measured, but resets to zero after each time interval. The delta cash
within each time interval is given by gamma cash multiplied by the
percentage move. To understand this one has to go back to the root
of how realised volatility is measured and over which time intervals.
These time intervals are agreed upon at inception of the variance swap
transaction and are per default defined as the close to close volatility,
i.e. the one day volatility. The following example clarifies how the time
intervals over which the volatility is measured impact the relationship
between delta cash and gamma cash.

Consider an investor who buys a 2 day variance swap on BMW
where σK = 32, i.e. an annualised volatility of 32 %. BMW happens to
move 1 % on both of these days. Assuming that a year has 256 days, the
annualised realised volatility is therefore 16 and because the variance
swap is bought at 32, the investor’s break-even volatility is 2 % per day.
Suppose that the gamma cash on the variance swap is 1 million euros.
A gamma cash of 1 million and a break-even volatility of z = 2 % a
day give a theta of 20 thousand euros a day. Indeed, since the absolute
break-even volatility in equation 3.2 is equal to y = zSt , equations 3.2
and 4.2 give that

θ = γ · z2S2
t

2
= γc · z2

200
= 20 000. (23.14)

Although the delta of the variance swap resets to zero at the end of each
business day, one finds that the variance swap does have a delta during
this business day. This means that at the start of each business day the
profit of a variance swap is independent of the direction of the move.
However, once the stock moves during the business day, the profit of
the variance swap starts to depend on the direction of the move that
follows. For example, if the buyer of the BMW variance swap snapshots
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his position halfway through the first business day when BMW is down
0.5 %, he finds himself having a short delta cash position of 500 thousand
euros. In other words, when BMW is already down 0.5 % the holder of
the variance swap benefits more if the stock goes down even more than
when it goes back up again. This is logical since the holder of the variance
swap wants to have as large a move as possible. The profit on the variance
swap when it goes down another 0.5 % to finish the first business day
down 1 % can now be calculated as either:

1.

12

200
· γc = 5000

or
2. gamma profit on the first 0.5 % move + profit on 500 thousand delta

cash for the second 0.5 % move (delta profit) + gamma profit on the
second 0.5 % move (equals the first 0.5 % move), mathematically

0.52

200
· γc + 0.5 × 5 · 105 + 0.52

200
· γc = 5000

Obviously, the profit on the move for the second business day is also
5000 euros as the gamma cash is constant through time and stock price.
In other words, the investor has made 10 000 euros on the two respective
moves, but lost 40 000 euros in theta, i.e. an overall loss of 30 000 euros.

23.5 REALISED VARIANCE VOLATILITY VERSUS
STANDARD DEVIATION

The realised volatility, σR , as defined in the payoff of the variance swap,
is not defined as a regular standard deviation. The volatility in the payoff
of the variance swap is really defined as the square root of the lognormal
returns squared times the annualisation factor. Mathematically,

σ 2
R =

Nd∑
i=1

[
ln

(
Si

Si−1

)]2

· 256

Nd
, (23.15)

where,� Si is the stock price at the close of business on day i ;� 256/Nd is the annualisation factor;� Nd is defined as the number of days during the term of the variance
swap.
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The reason that the volatility in the variance payoff is defined ac-
cording to equation 23.15 is to make sure that every move contributes
to the variance payoff regardless of any trend the stock price might
have. Indeed, the standard deviation reduces when a stock has a specific
trend. For example, a stock that goes up by 1 % for 10 days in a row
has a standard deviation of 0. In other words, the standard deviation of
the lognormal returns compensates for any trend the stock might have
by subtracting the average return from each return. Mathematically the
standard deviation, sd , of the lognormal returns is defined as

sd =
Nd∑

i=1

⎡⎣ln

(
Si

Si−1

)
−

∑Nd
i=1 ln

(
Si

Si−1

)
Nd

⎤⎦2

· 256

Nd
. (23.16)

23.6 EVENT RISK OF A VARIANCE SWAP VERSUS
A SINGLE OPTION

It has already briefly been discussed that the event risk on a variance
swap is far greater than the event risk on a single option, except for single
options close to expiry and close to the strike price. The reason being that
a variance swap has a constant gamma cash whereas the gamma cash of
a single option is concentrated around the strike price. This means that
if a large move occurs the profit impact is far greater on a variance swap
than for a single option. The single option first needs to be relatively
close to the strike for the move to have any impact at all. Even then the
single option loses its gamma quickly for very large moves as it moves
away from the strike price. Another very distinct feature of a variance
swap is that the profit impact for a specific move does not depend on
when the move occurs during the term of the option. A 10 % move that
occurs a year away from maturity has the same profit impact as a 10 %
move that occurs 1 day before maturity. This can easily be seen from
the profit formula in combination with the fact that the gamma cash on
a variance swap is constant. The profit formula is stated below. In this
formula z is the percentage movement of the underlying stock price.

γc · z2

200

The fact that the profit on a move is independent of time for a variance
swap is in stark contrast to a single option, where the timing of the move
heavily affects the profitability of the move. This is for the simple reason
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that the gamma on a single option changes quickly over time. Assuming
that the option is at the money, a 10 % move that occurs a year away
from maturity is far less profitable than a move that occurs a day before
expiry. Indeed, the gamma of a 1 day option is a multiple of a 1 year
option.

23.7 RELATION BETWEEN VEGA EXPOSURE AND
VARIANCE NOTIONAL

The standard for trading variance swaps is to agree on the vega expo-
sure of the variance swap rather than the variance notional. In order to
calculate the variance notional associated with the vega exposure of a
variance swap, one has to derive the variance notional needed to have
the change in volatility times vega equal the change in variance times
the variance notional, N . In other words, if the variance notional is
N , the variance strike is σ 2

K and the change in volatility is y, one wants
to solve the following equation[

(σK + y)2 − σ 2
K

] × N = vega × y × 100. (23.17)

The factor 100 in the right hand side of equation 23.17 stems from the
fact that volatility is expressed as a percentage. Since y is a small number,
Taylor3 expansion on (σK + y)2 reduces equation 23.17 to (square terms
in y or higher are negligibly small)

σ 2
K · N + 2σ · y · N − σ 2

K · N = vega · y · 100

⇓
N = vega

2σ
· 100 (23.18)

23.8 SKEW DELTA

All the derivations and conclusions about variance swaps in the previous
sub-sections are based on the assumption that the implied volatility is
constant in strike price. Chapter 5 shows that this is not a valid assump-
tion as the effect of skew results in higher implied volatilities for lower
strike prices. This skew effect means that σK is higher than the ‘at the

3 If f (y) is a function, Taylor expansion can rewrite the function f (y) as

f (y) = f (0) + f ′(0)y + f ′′(0)y2

2!
+ f ′′′(0)y3

3!
+ · · · · ·
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money’ volatility. More importantly, it means that the variance swap has
a delta after all, because the buyer of a variance swap benefits from the
market going down as the market will likely become more volatile and
the ‘at the money’ implied volatility will go up. The delta on a variance
swap induced by the effect of skew is better known as the skew delta. The
skew delta of a variance swap can easily be quantified and is clarified
by the following example.

Consider a trader who sells a 1 year variance swap on BMW at σK =
20 and the vega he sells is 25 thousand euros. The skew is such that
every 1 % down move in BMW’s share price translates to a 0.20 %
increase in the ‘at the money’ implied volatility. Since the trader is short
25 thousand euros of vega, each 1 % down move in the BMW price
translates to a 5 thousand euros loss on the variance swap (σK goes
up to 20.20 and hence a loss of 0.2 × 25 = 5 thousand euros). To hedge
this exposure to the dynamics of the variance swap as a result of skew,
the trader has to sell 500 thousand euros delta cash of BMW, which
serves as his skew delta. This skew delta will exactly offset any losses
on the BMW variance swap as a result of BMW going down by 1 %, as
he will make 5 thousand euros on the skew delta for a 1 % down move
(500 ∗ 0.01 = 5).

23.9 VEGA CONVEXITY

The vega of a variance swap is not constant in implied volatility. In other
words, whenever the implied volatility changes the vega exposure of the
variance swap changes. This can be seen by taking the derivative of ν in
equation 23.9 with respect to σ . This results in:

∂ν

∂σ
= ∂2

[
2
T �(St )

]
∂2σ

= 2 · (T − t)

T
. (23.19)

Equation 23.19 shows that, if the implied volatility goes up, the vega
exposure of a variance swap goes up as well.4 By the same token, if the
implied volatility goes down, the vega of a variance swap goes down
as well. Because of skew the ‘at the money’ implied volatility goes
up when the market goes down, which in turn translates into a higher
vega exposure. This means that the vega exposure goes up when the

4 Vomma is positive.
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underlying goes down and vice versa.5 This principle is referred to as
vega convexity. In other words, if the market goes down, the vega of a
variance swap goes up and if the market goes up, the vega of a variance
swap goes down. This can also be seen from formula 23.18. On any
given day, when the implied volatility goes up, the vega needs to go up
for the variance notional to remain constant.

5 Vanna is negative.
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Dispersion

Dispersion literally means scattering or spreading widely. In trading, dis-
persion means that one trades the basket volatility against the volatilities
of the constituents in that basket. The reason that being short volatility
on the basket and long the volatilities of the basket constituents is called
dispersion is because this trade makes money when the constituents are
heavily inversely correlated, i.e. −1. This can be seen by considering a
basket with two constituents A and B with equal weights. If both A and
B are very volatile, in which case being long volatility on these names
makes money, and A and B are perfectly inversely correlated, i.e. A
moves opposite to B, which means that, de facto, the basket does not
move and therefore being short volatility on the basket makes money
as well. This section discusses trading dispersion in more detail and
shows how the volatility of the basket is derived from its constituents.
More importantly, this chapter shows that being long dispersion means
being short correlation plus long volatility rather than just being short
correlation.

24.1 PRICING BASKET OPTIONS

Basket options are typically priced as a Monte Carlo process. How-
ever, to better understand the theory of dispersion it is imperative to
be able to use the Black–Scholes formula to price a basket option.
Unfortunately a basket option is not lognormally distributed even
though its constituents are. Therefore it is impossible to use the Black–
Scholes formula to accurately price a basket option. Nonetheless, one
can use ln

(∏n
i=1 Swi

i,t

)
, which is lognormally distributed, to estimate

ln
(∑n

i=1 wi Si,t
)
. This approximation enables one to use the Black–

Scholes formula to price a basket option. Although this method will
never provide the most accurate price for the basket option, it does give
the opportunity to derive the specific features associated with a basket
option and hence the features that are so pivotal in understanding dis-
persion trading.

151
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24.2 BASKET VOLATILITY DERIVED FROM
ITS CONSTITUENTS

Consider a basket, Bt , with n constituents, Si,t , and each constituent has
a weight wi . Mathematically this basket looks like

Bt =
n∑

i=1

wi Si,t ,

n∑
i=1

wi = 1. (24.1)

If the ‘at the money’ implied volatility of each constituent Si,t is σi ,1

statistics show that the ‘at the money’ implied volatility, σb, of the basket
is determined by2

σ 2
b = Var

[
ln

(
n∑

i=1

wi Si,t

)]
(24.2)

≈ Var

[
ln

(
n∏

i=1

Swi
i,t

)]
(24.3)

=
n∑

i=1

n∑
j=1

wiw j Cov (ln (Si,t ), ln (Sj,t ))

=
n∑

i=1

n∑
j=1

wiw jσi j

=
n∑

i=1

n∑
j=1

wiw jσiσ jρi, j

=
n∑

i=1

w2
i σ

2
i +

n∑
i=1

n∑
j=1, j �=i

wiw jσiσ jρi, j , (24.4)

where� σi j is the covariance between ln(Si ) and ln(Sj );� σi is the implied volatility of Si ;� ρi j is the correlation between ln(Si ) and ln(Sj ).

1 This notation is purely for the purposes of simplicity. Unfortunately, it can be a bit deceiving as it seems
as if the implied volatility is independent of time, which it obviously is not. It would be better to assume that the
implied volatility equals σi (T − t), but for simplicity the (T − t) part is left out.

2 Equation 24.2 makes implicit use of Jensen’s inequality, which states that

n

√√√√ n∏
i=1

(
Si,t

)wi ≤ 1

n

n∑
i=1

wi Si,t

n∑
i=1

wi = 1.

and therefore uses Var
[
ln

(∏n
i=1 S

wi
i,t

)]
to estimate Var

[
ln

(∑n
i=1 wi Si,t

)]
.
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24.3 TRADING DISPERSION

In practice it is very easy to trade dispersion. Consider a basket with 10
equally weighted stocks. Suppose an investor wants to be long the volatil-
ities of the constituents in respect to their weighting and short volatility
on the basket. The way the investor achieves this is by buying vega on
the stocks according to their weights in the basket and selling vega on the
basket itself. The investor can either buy vega through buying options or
through buying variance swaps (see Chapter 23) on the stocks. In order
to be short vega on the basket he has to sell options on the basket or sell
variance swaps on the basket. This investor wants to be short one million
euros of vega on the basket and therefore long € 100 thousand vega on
each of the individual stocks. Suppose that the weighted average implied
volatility of the stocks is 25 and the implied volatility of the basket is 17.
In this case the investor makes money if the spread between the weighted
average implied volatility of the stocks and the implied volatility of the
basket widens.3

24.4 QUOTING DISPERSION IN TERMS
OF CORRELATION

Dispersion is typically quoted in terms of correlation. Equation 24.2
shows that one can express the volatility of the index or basket in terms of
its constituent volatilities and the correlations between the stocks within
the basket. In order to measure dispersion in terms of one correlation
number, one assumes that ρi, j is constant in all i and j and is equal to
ρb. From equation 24.2 one can derive this correlation ρb as

ρb = σ 2
b − ∑n

i=1 w2
i σ

2
i∑n

i=1

∑n
j=1, j �=i wiw jσiσ j

. (24.5)

24.5 DISPERSION MEANS TRADING A
COMBINATION OF VOLATILITY AND CORRELATION

Consider an investor who is long dispersion. In other words, he is long
vega on the stocks in the basket according to their weights and short

3 Sub-section 24.5 explains that a widening of the spread between the weighted average volatility and the
implied volatility of the index is not always a recipe for making money on a long dispersion position. Namely,
when the overall volatility goes down, one can even lose money on a widening of the spread. To make sure
that a long dispersion position benefits from a widening spread, dispersion is often traded as a ratio where
the vega position on the index is larger than the cumulative vega position on the stocks. This is discussed in
sub-section 24.6.
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vega on the basket itself. Mathematically this means that this investor
has the following position:

n∑
i=1

wiσi − σb. (24.6)

Equation 24.2 shows that this position is equivalent to

n∑
i=1

wiσi − σb =
n∑

i=1

wiσi −
√√√√ n∑

i=1

n∑
j=1

wiw jσiσ jρi, j ≥ 0 (24.7)

Equation 24.7 shows that being long dispersion means being long the
volatilities of the individual stocks. Indeed, this is clear since −1 ≤
ρi, j ≤ 1 and therefore

n∑
i=1

wiσi =
√√√√ n∑

i=1

n∑
j=1

wiw jσiσ j

≥
√√√√ n∑

i=1

n∑
j=1

wiw jσiσ jρi, j .

In other words, everything being equal (correlations and weights remain
unchanged), if the volatilities of the individual stocks go up, a long dis-
persion position makes money. Knowing that a long dispersion position
is like being long the individual stock volatilities, equation 24.7 can now
be rewritten in terms of ρb, the constant correlation in which dispersion
is typically measured, to see what the sensitivity is to correlation for a
long dispersion position.

n∑
i=1

wiσi − σb =
n∑

i=1

wiσi −
√√√√ n∑

i=1

w2
i σ

2
i +

n∑
i=1

n∑
j=1, j �=i

wiw jσiσ jρb

(24.8)

Equation 24.8 shows that a long dispersion position is short correlation.
In other words, if the correlation goes down, a long dispersion position
makes money.

In summary, a long dispersion position is first and foremost a short
correlation position. This means that, the more inversely correlated the
individual constituents are, the more more profitable is a long disper-
sion position. However, it is important to recognise that a long dispersion
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position also has a long exposure to the individual stock volatilities. To
make sure that a dispersion position is solely a short correlation posi-
tion, traders typically do not trade the cumulative vega of the stocks in
equal size to the vega of the index or basket. The following sub-section
shows how to ratio the vega of each leg of the dispersion to only have
an exposure to correlation.

24.6 RATIO’D VEGA DISPERSION

As stated in the previous sub-section, dispersion is not a real short corre-
lation trade. Indeed, a decrease in correlation can be offset by a decrease
in volatility of the individual stocks. For this reason traders typically
ratio the size in which they trade the vega on the index compared to
the vega on the individual stocks. Determining the required ratio to es-
tablish a sole correlation position and therefore take away the residual
long volatility position is rather simple and intuitive. This ratio is indeed
nothing more than the ratio of the weighted average stock volatility level
and the index volatility level. Consider the example in sub-section 24.3
where the weighted average stock volatility is 25 and the index volatility
is 17. To effectively establish a sole short correlation position one has to
trade the dispersion in a ratio of 1: 25

17 , meaning that one has to be short
25/17 times the amount of vega on the index compared to the cumula-
tive single stock position. In other words, if the cumulative single stock
position is € 1 million vega, a short position of € 1.47 million vega in
the index effectively gives a pure short correlation position.

When trading a dispersion through variance swaps one has to be care-
ful to put the right ratio in place. Since a dispersion through variance
swaps is equivalent to the position

n∑
i=1

wiσ
2
i − σ 2

b , (24.9)

the ratio should first of all be expressed in variance notionals rather than
vega. The ratio in which the variance notionals should be traded is then
derived by the square of the ratio between the weighted average single
stock volatility and the index volatility. This means that if the weighted
average single stock volatility is 25, the index volatility is 17 and the
cumulative single stock variance notional is € 200 million, the variance
notional on the index should be 200 · (25/17)2 = € 432.53 million.



JWBK097-24 JWBK097-DeWeert February 5, 2008 3:7 Char Count= 0

156 Exotic Options Trading

24.7 SKEW DELTA POSITION EMBEDDED
IN DISPERSION

Any dispersion position has an embedded skew delta position. This stems
from the fact that the skew on an index is almost always steeper than
the skew of any of the individual stocks. In turn, the reason for this is
that an individual stock might be volatile on the upside as well as on the
downside, whereas the market as a whole becomes more volatile when
the market goes down and less volatile when the market goes up. The
fact that an index has a steeper skew than each of the individual stocks
results in the fact that a long ratio’d dispersion position makes money as
the market goes up and loses money if the market goes down, all other
variables being equal. Indeed, whenever the market goes up, the short
index implied volatility within the long ratio’d dispersion position goes
down more than the implied volatility of the individual stocks. This is
due to a steeper index skew than the skew of the individual stocks. When
the market goes down, the steeper index skew results in the reverse, i.e.
the short index position loses more than the long single stock volatilities
make. In summary, a long dispersion is effectively long delta as a result
of a steeper skew on the index or basket than on the individual stock
constituents. This means that a long dispersion position has an embedded
long skew delta position, which can be hedged by selling some delta on,
for example, the index.



JWBK097-25 JWBK097-DeWeert February 5, 2008 1:5 Char Count= 0

25

Engineering Financial Structures

This chapter discusses different retail investors and how to financially
engineer structures that suit each investor’s needs. The structures dis-
cussed in this chapter are typically not complicated or even exotic, but,
since financially engineered retail products are such an important part
of investor demand, this chapter shows how notes can be structured
to achieve the financial needs of different investor profiles. There are
basically three different types of retail investors: the risk averse retail
investor who wants to invest his money in capital protected products;
the retail investor who wants some exposure to the equity markets, but
still wants to have a balanced and well thought out risk profile; the retail
investor who uses financial structures to leverage his views.

25.1 CAPITAL GUARANTEED PRODUCTS

A capital guaranteed product is a suitable product for the risk averse
investor who does want to have some exposure to the equity markets. The
principle of the capital guaranteed product is that the investor buys a zero
coupon bond and, since the present value of a zero coupon bond is less
than 100 %, the difference between the present value of the zero coupon
bond and 100 % is invested in buying an option that gives exposure to
the equity markets. In other words, with a capital guaranteed product,
the investor gives up a coupon to subsequently invest it in either a call or
a put option. For example, a risk averse investor who is bullish on BMW
could buy a capital guaranteed product where, instead of receiving a
coupon on the bond, he invests the coupon to buy participation in a call
option. Obviously, if the investor were bearish on BMW, he would give
up the coupon to buy participation in a put option.

Consider a risk averse investor who is bearish on BMW for the com-
ing year and therefore wants to buy a capital guaranteed structure that
increases in value if BMW goes down. Suppose that a one year zero
coupon bond is worth 95.5 %, and a one year ‘at the money’ put on
BMW is worth 5.625 %. Therefore theinvestor buys a zero coupon

157
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Figure 25.1 Payoff at maturity of a bearish capital guaranteed note, where the investor
profits in 80 % of BMW’s decline

bond and 80 % ((100 − 95.5)/5.625) participation in an ‘at the money’
put. The investor has € 10 million to invest and BMW’s share price is
trading at € 40. This means that the investor buys € 10 million worth
of zero coupon bonds and € 8 million worth of BMW ‘at the money’
puts, which means that the capital guaranteed note has 200 thousand
‘at the money’ puts embedded in it. Since the investor only has 80 %
participation in the ‘at the money’ put, the investor profits in only 80 %
of BMW’s decline. This means that, if after one year BMW has gone
down by 50 %, the investor only makes 40 % on the invested notional
and therefore gets paid € 14 million after one year, i.e. € 10 million
from the zero coupon bond and € 4 million from the embedded put. The
payoff profile after 1 year looks like Figure 25.1.

25.2 ATTRACTIVE MARKET CONDITIONS FOR
CAPITAL GUARANTEED PRODUCTS

The market conditions under which capital guaranteed products look
most attractive are when the option participation and therefore the expo-
sure to the equity markets are largest. This can be achieved in two ways.
Either the present value of the zero coupon bond is low, in which case
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there is more premium available to invest in the option and therefore the
participation in the equity markets is larger. Or the option premium is
low, which also increases the participation in the equity markets. Obvi-
ously, the present value of the zero coupon bond is lower when interest
rates are higher. Option premiums are lower when first of all the implied
volatility is lower. For a bearish capital guaranteed product, the option
premium is also lower when the dividend yield of the underlying is lower,
since a bearish capital guaranteed product has a put embedded in it. A
bullish capital guaranteed product comprises a zero coupon bond plus a
participation in a call option and hence the participation will be larger
for a higher dividend yield. In summary, these are the market conditions
that make a bullish capital guaranteed product look most attractive, i.e.
the call option participation is highest:� The higher the interest rate the lower the present value of the zero

coupon bond and therefore the more premium available to invest in
the call option participation embedded in the bullish capital guaranteed
product.� The lower the implied underlying volatility the lower any option pre-
mium and thus the lower the call option premium, which results in a
higher participation in a call option for the bullish capital guaranteed
product.� The higher the dividend yield the lower the call option premium and
therefore the higher the participation in the call option embedded in
the bullish capital guaranteed product.

For a bearish capital guaranteed product the most attractive market con-
ditions can be summarised as follows:� The higher the interest rate the lower the present value of the zero

coupon bond and therefore the more premium available to invest in
the put option participation embedded in the bullish capital guaranteed
product.� The lower the implied underlying volatility the lower any option pre-
mium and thus the lower the put option premium, which results in a
higher participation in a put option for the bearish capital guaranteed
product.� The lower the dividend yield the lower the put option premium and
therefore the higher the participation in the put option embedded in
the bearish capital guaranteed product.
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25.3 EXPOSURE PRODUCTS FOR THE CAUTIOUS
EQUITY INVESTOR

The reverse convertible, as discussed in Chapter 15, is typically the type
of investment that a cautious equity investor who has some appetite for
risk would buy. Since the reverse convertible is already discussed in
Chapter 15, this sub-section takes the opportunity to show yet another
iteration of a financial note that the cautious equity investor with some
risk appetite would invest in. This product is sometimes referred to as
an airbag and, like the reverse convertible, this note gives exposure to
the equity markets through a down-and-in put or regular put. As an
additional feature, the coupon on this note is conditional on a certain
lower bound of the stock price and therefore pays a higher coupon than
the reverse convertible. In effect, the note is slightly leveraged on the
downside as the conditional coupon means that the investor not only
loses money through the put or down-and-in put on the downside, but
can also lose his coupon if the underlying devalues too much. This
conditional coupon is often priced as a down-and-out put. The pricing
is shown by the following example.

Consider an investor who wants to buy a 1 year reverse convertible on
BMW with a conditional coupon. Suppose that the one year 100/80 %
knock-in reverse convertible pays a bullet coupon at maturity of 7.5 %.
The investor is prepared to lose his coupon if, at any time during the life
of the note, the stock drops below 85 % of BMW’s initial share price.
Because the coupon is conditional, the coupon on this note is higher than
7.5 %. Unlike the reverse convertible, where one solves for the coupon
that makes the fair value or re-offer 100 %, the reverse convertible with
conditional coupon does not solve for the coupon directly but solves
for it indirectly through the redemption of the zero coupon bond and
the rebate of a zero1 strike down-and-out put with rebate. This rebate
is equal to the excess redemption over 100 % on the zero coupon bond.
In other words, the excess redemption over 100 % and the rebate of the
down-and-out put are used as variables to make the reverse convertible
with conditional coupon worth 100 %. The conditional coupon appears
to be 10 %, which means that the following structure is worth 100 %.� The price of a 1 year zero coupon bond with a redemption of 110 %

(trader sells) instead of 100 %. Minus

1 The fact that it is a zero strike down-and-out put with rebate means that it only gives a payout when it
knocks out and therefore pays the rebate.
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� The price of a 1 year 100/80 % down-and-in put (trader buys),
which the trader prices as a 1 year 100/77 % down-and-in put because
of the delta change over the barrier. Like the reverse convertible, the
down-and-in put is used to enhance the coupon. Minus� The price of a 0/85 % down-and-out put with a 10 % rebate (trader
buys), which he prices as a 0/83 % down-and-out put because of the
delta change over the barrier (the trader makes money because of
the rebate as BMW’s stock price goes down and through the barrier).
Pricing the barrier shifted down-and-out put decreases the price of the
down-and-out put with rebate and therefore the trader buys it at lower
premium. The rebate has a delayed payment and is paid at maturity of
the full structure. The rebate cancels out the excess redemption over
100 %, in this case 10 %, from the zero coupon bond and makes sure
that the investor only receives 100 % at maturity if at any point the 85 %
barrier is breached. It is important to understand that the rebate and the
excess redemption over 100 % from the zero coupon bond are the same
and therefore in solving the conditional coupon, the rebate of the down-
and-out put and the redemption of the zero coupon bond are linked.

The payoff profile of the reverse convertible with conditional coupon
is shown in Figure 25.2. The dotted payoff is to show that this only

60 % 80 % 85 % 100 %
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Figure 25.2 Payoff at maturity of a reverse convertible with a 10 % conditional coupon,
where the coupon is conditional on BMW >85 % and the investor is short a 100/85 %
knock-in put on BMW
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occurs when the down-and-in put has actually knocked in. Obviously,
the market conditions under which the conditional coupon is highest
are when interest rates are high and when the implied volatility and the
dividend yield of the underlying stock are high.

There are many iterations of the reverse convertible note with condi-
tional coupon. For example, instead of being protected on the downside
through the down-and-in put, one can think of a note where the investor
is fully exposed to the downside of BMW. The 10 % coupon is still
conditional on BMW never breaching 85 % of BMW’s initial level. In
return for giving up the protection through the down-and-in put and
therefore participating in the full downside of BMW’s share price, the
investor participates in the full upside over 110 % up to 135 %. This
structure can be priced as follows and is also worth 100 %. Although
the the structure looks complicated, it can still be priced as a series of
options and barrier options. However, the pricing is quite convoluted
but it shows the potential of creating innovative structures by financially
engineering combinations of existing options rather than creating new
option payoffs. Therefore, the pricing below can better be seen as an
exercise than an addition to theory.� A zero strike call which the trader sells. This zero strike call is worth

100 % minus the dividend yield and ensures that the investor is exposed
to both the downside and the upside.� A 110/100 % put spread which the trader also sells, where both puts
knock out at 85 %. The 110/100 % put spread, which knocks out at
85 %, together with the zero strike call ensure that the investor re-
ceives a 10 % coupon provided that the share price never breaches
85 %, while at the same time fully exposing the investor to the
downside.� A 135 % call which the trader buys and ensures that the investor’s
participation to the upside is capped to 135 %.� A 100/110 % call spread which the trader buys. However, both calls in
the call spread are down-and-in calls and only knock in when BMW’s
share price breaches 85 %. This ensures that the investor does not
participate in the first 10 % upside in BMW’s share price when the
85 % level has been breached. When the 85 % has not been breached,
the zero strike call in combination with the 110/100 % put spread
ensures that the investor receives a 10 % coupon while being fully
exposed to the downside, i.e. up to 100 % the payout to the investor
is 10 % higher than one would expect based on the zero strike call.
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Figure 25.3 Payoff at maturity of a reverse convertible with a 10 % conditional coupon,
where the coupon is conditional on BMW >85 % and the investor has full exposure to
the downside as well as the upside from 110 % up to 135 %

Therefore this 100/110 % call spread need only be live once the 85 %
level has been breached. Hence, they are down-and-in calls.

Theoretically, one could apply a downward barrier shift to the
100/85 % down-and-in call. However, the value change over the bar-
rier is minimal and the exposure to any delta change is also partially
offset by the short 110/85 % down-and-in call.

Figure 25.3 shows the payoff profile of the above iteration of the reverse
convertible with conditional coupon. The dotted line shows the payoff
to the investor when the 85 % barrier has been breached, in which case
the investor loses his conditional coupon and hence the 10 % parallel
shift in payout.

25.4 LEVERAGED PRODUCTS FOR THE RISK
SEEKING INVESTOR

The real risk seeking investor is prepared to give up any coupon for
the sake of leveraging his view on a stock or the market. The perfect
note such an investor would invest in is a structure where the investor
buys a bond and, when he is bullish, he sells a put to gain additional
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Figure 25.4 Payoff at maturity of a geared bullish note where the investor is fully
exposed to the downside and participates in 150 % of the upside

participation in a call. When the investor is bearish, he sells a call option
to gain additional participation in a put option.

As an example, consider an investor who is bullish on BMW and
therefore sells a 1 year ‘at the money’ put in order to gear his exposure
to the upside. In other words, the investor buys a 1 year zero coupon
bond, sells a 1 year ‘at the money’ put and buys X % of a 1 year ‘at the
money’ call. X is solved for, such that the full structure is worth 100 %.
It appears that X % is 150 %, which means that the investor participates
in 1.5 times the upside of BMW’s share price. The payoff profile of
this note, which is sometimes referred to as a supertracker, is shown in
Figure 25.4.

Now consider an investor who is bearish on BMW and therefore buys
a bearish geared note. In this case the investor buys a 1 year zero coupon
bond, sells a 1 year ‘at the money’ call and buys a 1 year X % geared ‘at
the money’ put. When X % is equal to 233 %, the full bearish geared note
appears to be worth 100 %.2 The payoff profile of the bearish geared note
is shown in Figure 25.5. The above shows that the bearish note works

2 For the sake of completeness the numbers that are used in both the bullish and the bearish geared notes are
that the 1 year zero coupon bond is worth 97 %, the 1 year ‘at the money’ call is worth 4 % and the 1 year ‘at the
money’ put is worth 3 %.
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Figure 25.5 Payoff at maturity of a geared bearish note where the investor is fully
exposed to the upside and participates in 233 % of the downside

along the same lines as the bullish note with the caveat that the bearish
note has some credit exposure to the investor that the bullish note does
not have. Since the investor is owed 100 % at maturity and the put can
never be worth more than 100 %, the bullish note gives no credit exposure
to the investor in the note. However, with the bearish note the investor is
short an ‘at the money’ call which is worth more than 100 % if BMW’s
share price is higher than 200 % and, since the investor is only owed
100 %, this bearish note does give some credit exposure to the investor.
For this reason, the bearish note typically has a 200 % call embedded in
it which the investor buys. This will slightly decrease the gearing on the
put in the bearish note.
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Appendix A
Variance of a Composite Option

and Outperformance Option

It is relatively easy to prove that the variance of a composite option is
equal to

σ 2
compo = σ 2

S + 2ρσSσFX + σ 2
FX. (A.1)

One just has to compare the movement of the underlying in the composite
currency with the movement of a geometric basket option composed of
the underlying in the local currency and the FX rate. The formula for
this basket option is as follows:

Ft = St,localSt,FX, (A.2)

where
dSt,local

St,local
= rlocaldt + σSdW1,t , (A.3)

and1

dSt,FX

St,FX
= (

rcompo − rlocal

)
dt + σFXdW2,t . (A.4)

Since

Var [ln (Ft )] = Var
[
ln

(
St,localSt,FX

)]
= Var

[
ln

(
St,local

) + ln
(
St,FX

)]
= (

σ 2
S + 2ρσSσFX + σ 2

FX

)
t, (A.5)

and

E [ln (Ft )] = E
[
ln

(
St,localSt,FX

)]
(A.6)

= rlocalt + (
rcompo − rlocal

)
t (A.7)

= rcompot, (A.8)

1 To get an intuitive feel for equation A.4, imagine an exchange rate with zero volatility and therefore the value
of the exchange rate only changes because of differences in risk free interest rates between the currencies. In this

case St+dt,FX = St,FX
1+rcompodt

1+rlocaldt . Taylor expansion gives that this is equal to St,FX(1 + (rcompo − rlocal)dt).
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the movement of the stock in the composite currency can be modeled
according to equation 20.1.

Assuming that another stock Yt behaves according to the following
process

dYt,local

Yt,local
= rlocaldt + σY dW3,t , (A.9)

one can easily prove that the variance of the process Ft = St
Yt

is equal to

σ 2
F = σ 2

S + σ 2
Y − 2ρσSσY . (A.10)

If the dividend yield is zero, the mean for Ft is zero. Namely,

Var [ln (Ft )] = Var

[
ln

(
St,local

Yt,local

)]
= Var

[
ln

(
St,local

) − ln
(
Yt,local

)]
= σ 2

S + σ 2
Y − 2ρσSσY , (A.11)

and

E [ln (Ft )] = E
[
ln

(
St,local)

) − ln
(
Yt,local

)]
= 0 (A.12)
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Appendix B

Replicating the Variance Swap

The variance swap can be replicated by 1
K 2 options on all different strikes

K . Since out of the money options are generally more liquid, a variance
swap is replicated by both calls and puts. Let Sc be the cutoff above which
the replicating option strikes are calls and below Sc the replicating option
strikes are puts. Now it is easy to prove that the payoff of this replicating
portfolio at maturity is:

� (ST ) = ST − Sc

Sc
− ln

(
ST

Sc

)
. (B.1)

Indeed, there are two possibilities; either ST > Sc, in which case the puts
are worthless and the payoff is merely the integration of all the calls,
or ST < Sc and all the calls are worthless and the payoff is merely an
integration of all the puts. First consider the scenario that ST > Sc

� (ST ) =
∫ Sc

0

1

K 2
max [K − ST , 0] dk +

∫ ∞

Sc

1

K 2
max [ST − K , 0] dk

=
∫ ST

Sc

1

K 2
(ST − K ) dk

=
∫ ST

Sc

− 1

K
+ ST

K 2
dk

=
[
− ln(K ) − ST

K

]ST

Sc

= ST − Sc

Sc
− ln

(
ST

Sc

)
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If ST < Sc one gets

� (ST ) =
∫ Sc

0

1

K 2
max [K − ST , 0] dk +

∫ ∞

Sc

1

K 2
max [ST − K , 0] dk

=
∫ Sc

0

1

K 2
(K − ST ) dk

=
∫ Sc

0

1

K
− ST

K 2
dk

=
[

ln(K ) + ST

K

]Sc

0

= ST − Sc

Sc
− ln

(
ST

Sc

)
To prove that a variance swap can at any time be replicated by 1/K 2

options on each strike, one not only needs an expression for �(ST ), the
value of the replicating portfolio at maturity, but also for any t . Equation
23.4 shows that �(St ) can be expressed as

� (St ) =
∫ Sc

0

1

K 2

[
Ke−r (T −t) N (−d2) − St N (−d1)

]
dk

+
∫ ∞

Sc

1

K 2

[
St N (d1) − Ke−r (T −t) N (d2)

]
dk

= St − Sc

Sc
− ln

(
St

Sc

)
+ σ 2(T − t)

2
. (B.2)

The proof for expression B.2 is quite prolonged. Nonetheless this ap-
pendix gives it to first of all allow the mathematically interested reader
to check the validity of the replicating method and secondly it can serve
as a point of reference.

The proof is split up into two parts. First it is shown that �(St ) with a
cutoff equal to Sc, �(St , Sc), minus �(St ) with a cutoff of St , �(St , St ),
is equal to

St − Sc

Sc
− ln

(
St

Sc

)
. (B.3)
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The second part of the proof shows that �(St , St ) is equal to

σ 2(T − t)

2
. (B.4)

Adding the first and second parts is obviously equal to the replicating
portfolio of 1/K 2 options per strike where a cutoff of Sc, �(St , Sc), is
used and is in turn equal to the expression in equation B.2.

For simplicity, both parts are proved assuming that the interest rate
is zero. The first part makes use of the following feature of a standard
normal distribution

1 − N (d1) = N (−d1)

1 − (N (d2) = N (−d2).

Using this knowledge it is easy to prove the first part

�(St , Sc) − �(St , St ) =
∫ Sc

0

1

K 2
[K − KN(d2) − St + St N (d1)] dk

−
∫ St

0

1

K 2
[K − KN(d2) − St + St N (d1)] dk

+
∫ ∞

Sc

1

K 2
[St N (d1) − KN(d2)] dk

+
∫ ∞

St

1

K 2
[St N (d1) − KN(d2)] dk

=
∫ Sc

St

1

K 2
[K − KN(d2) − St + St N (d1)] dk

−
∫ Sc

St

1

K 2
[St N (d1) − KN(d2)] dk

=
∫ Sc

St

1

K 2
[K − St ] dk

= St − Sc

Sc
− ln

(
St

Sc

)
.

The proof for the second part is quite daunting and is therefore only for
the readers that are interested in the rigorous mathematics behind the
replicating portfolio of the variance swap. The proof starts by substitut-
ing d1 and d2 into their respective positions and subsequently applying
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several shifts to the integral.1

�(St , St )
α=σ

√
T −t=

∫ St

0

1

K 2
[KN(−d2) − St N (−d1)] dk

+
∫ ∞

St

1

K 2
[St N (d1) − KN(d2)] dk

=
∫ St

0

1

K 2

[
KN

(
− ln( St

K )

α
+ α

2

)

− St N

(
− ln( St

K )

α
− α

2

)]
dk

+
∫ ∞

St

1

K 2

[
St N

(
ln( St

K )

α
+ α

2

)

−KN

(
ln( St

K )

α
− α

2

)]
dk

K=St el=
∫ 0

−∞

[
St e

l N

(
l

α
+ α

2

)
− St N

(
l

α
− α

2

)]
dl

St el

+
∫ ∞

0

[
St N

(
− l

α
+ α

2

)
−St e

l N

(
− l

α
− α

2

)]
dl

St el

=
∫ 0

−∞

[
N

(
l

α
+ α

2

)
− e−l N

(
l

α
− α

2

)]
dl

+
∫ ∞

0

[
e−l N

(
− l

α
+ α

2

)
− N

(
− l

α
− α

2

)]
dl

=
∫ ∞

0

[
N

(
− l

α
+ α

2

)
− el N

(
− l

α
− α

2

)]
dl

+
∫ ∞

0

[
e−l N

(
− l

α
+ α

2

)
− N

(
− l

α
− α

2

)]
dl

=
∫ ∞

0

[(
1 + e−l

)
N

(
− l

α
+ α

2

)
− (

1 + el
)

N

(
− l

α
− α

2

)]
dl

1 This proof is thanks to Alex Boer.
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=
∫ ∞

0

[∫ − l
α
+ α

2

−∞

(
1 + e−l

)
√

2π
e− x2

2 dx

−
∫ − l

α
− α

2

−∞

(
1 + e−l

)
√

2π
e− x2

2 dx

]
dl

=
∫ ∞

0

[∫ 0

−∞

(
1 + e−l

)
√

2π
e− (x− l

α + α
2 )2

2 dx

−
∫ 0

−∞

(
1 + e−l

)
√

2π
e− (x− l

α − α
2 )2

2 dx

]
dl

=
∫ ∞

0

[∫ 0

−∞

(
e

l
2 + e− l

2

)
e− l

2 e−
(

x2+ l2

α2 + α2
4 − 2lx

α + x
α −l

)
2

]
dxdl√

2π

−
∫ ∞

0

[∫ 0

−∞

(
e

l
2 + e− l

2

)
e

l
2 e−

(
x2+ l2

α2 + α2
4 − 2lx

α − x
α +l

)
2

]
dxdl√

2π

x=−x=
∫ ∞

0

[∫ ∞

0

(
e

l
2 + e− l

2

)
e− x2

2 − l2

2α2 − α2

8

×
(

e− xl
α

+ xα
2 − e− xl

α
− xα

2

)] dxdl√
2π

l=2αl, x=2x=
∫ ∞

0

[∫ ∞

0

(
eαl + e−αl

)
e−2x2−2l2− α2

8

× (
eαx − e−αx

)
e−4xl 4α√

2π

]
dxdl

=
∫ ∞

0

[∫ ∞

0
cosh(αl) sinh(αx)e−2(x+l)2

e− α2

8
16α√

2π

]
dxdl

p= x+l
2 , q= x−l

2=
∫ ∞

0

[∫ p

−p
e−8p2

cosh(α(p − q)) sinh(α(p + q))

× e− α2

8
32α√

2π

]
dqdp

=
∫ ∞

0

[
e−8p2

e− α2

8
32α√

2π

∫ p

−p
cosh(α(p − q))

× sinh(α(p + q))dq] dp
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=
∫ ∞

0

[
e−8p2

e− α2

8
32α√

2π
sinh(2αp) · p

]
dp

= 16α√
2π

∫ ∞

0

[(
e−8p2+2αp− α2

8 − e−8p2−2αp− α2

8

)
p
]

dp

= 16α√
2π

∫ ∞

0

[
pe

−
(√

8p− α√
8

)2

− pe
−

(√
8p+ α√

8

)2]
dp

= 16α√
2π

∫ ∞

0

[
pe− (4p− α

2 )2

2 − pe− (4p+ α
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