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1 Introduction

Just like a a drunk man leaving a bar follows a random walk. His dog also follows a random
walk on its own. The paths will diverge ... Then they go into a park where dogs are not
allowed to be untied. Therefore the drunk man puts a strap on his dog and both enter into
the park. Now, they share some common direction, their paths are co-integrated ... see
Murray [11].

A good intro is also given by Carol Alexander in [2] ”Cointegration and asset allocation:
A new active hedge fund strategy”.

Definition: Two time series xt and yt are co-integrated if, and only if, each is I(1) and a
linear combination Xt − α− βYt, where β1 6= 0 is I(0)

In general, linear combinations of I(1) time series are also I(1). Co-integration is a
particular feature not displayed between arbitrary pairs of time series.

If two time series are co-integrated, then the co-integrating vector (β1) is unique
Granger (1981) introduced the case

yt = α + βxt + ut (1)
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1 INTRODUCTION

where the individual time series are I(1) but the error term, ut, is I(0). That is, the error term
might be autocorrelated but, because it is stationary, the relationship will keep returning to
the equilibrium or long-run equation yt = α + βxt

Granger (1981) and Engle and Granger (1987) demonstrated that, if a vector of time series
is cointegrated, the long-run parameters can be estimated directly without specifying the
dynamics because, in statistical terms, the estimated long-run parameter estimates converge
to their true values more quickly than those operating on stationary variables. That is they
are super-consistent and a two-step procedure of first estimating the long-run relationship
and estimating the dynamics, conditional on the long run becomes possible.

As a result, simple static models came back in vogue in the late 1980’s but it rapidly
became apparent that small sample biases can indeed be large (Banerjee et al, 1986).

Two major problems typically arise in a regression such as (1). First, it is not always clear
whether one should regress yt on xt or vice versa. Endogeneity is not an issue asymptotically
because the simultaneous equations bias is of a lower order of importance and, indeed, is
dominated by the non-stationarity of the regressor. However, least squares is affected by
the chosen normalisation and the estimate of one regression is not the inverse of that in the
alternative ordering unless R2 = 1.

Secondly, the coefficient β̂ is not asymptotically normal when xt is I(1) without drift, even
if ut is iid. Of course, autocorrelation in the residuals produces a bias in the least squares
standard errors, even when the regressor is non-stationary, and this effect is in addition to
that caused by non-stationarity.

The preceding discussion is based on the assumption that the disturbances are stationary.
In practice, it is necessary to pre-test this assumption. Engle and Granger suggested a
number of alternative tests but that which emerged as the popular method is the use of an
ADF test on the residuals without including a constant or a time trend.

1.1 Stationary and non-stationary variables

Consider :
yt = ρyt−1 + εt (2)

If |ρ| < 1 then the series is stationary (around 0), if |ρ| = 1 then it is non-stationary (a
random walk in this case).

A stationary series is one for which :

(i) the mean is constant

(ii) the variance is constant, and

(iii) Covariance(yt, yt−s) depends only upon the lag length s.
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1 INTRODUCTION

Strictly, this is ”weak” or ”second order” stationarity but is good enough for practical
purposes.

We can more generally write

yt = α + ρyt−1 + εt (3)

which is stationary around α/(1 − ρ). (To see this, set E(yt) = E(yt−1) hence E(y) =
α + ρE(y) + 0, hence E(y) = α/(1− ρ).)

If ρ = 1, we have a random walk with drift.
We can also have a second order AR process, e.g.

yt = ρ1yt−1 − ρ2yt−2 + εt (4)

The conditions for stationarity of this series are given later.
We can also have a time trend incorporated:

yt = β1 + β2t + ρyt−1 + εt (5)

This will be stationary (around β1 + β2t) if ρ < 1. This is called a trend stationary series
(TSS).

As trend stationary series can look similar to non-stationary series.
This is unfortunate, since we should de-trend the former (take residuals from a regression

on time) and difference the latter (the latter are also known as difference stationary series
for this reason. It is also known as a stochastic trend). Doing the wrong transformation
leads to biased estimates in regression, so it’s important (but unfortunately difficult) to tell
the difference.

Note that, for a non-stationary process

yt = α + yt−1 + εt we can write :

y0 = 0 (say) (6)

y1 = α + 0 + ε1 (7)

y2 = α + y1 + ε2 = 2α + ε1 + ε2 (8)

... (9)

yt = αt +
∑

ε (10)

This implies that
var(y) = tvar(varepsilon) = tσ2 (11)

which tends to infinity as the sample size increases.
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2 PAIRS TRADING MODEL

For a Trend Stationary Series with ρ = 0:

yt = β1 + β2t + εt

y0 = 0 (say) (12)

y1 = β1 + β2 + ε1 (13)

y2 = β1 + β22 + ε2 (14)

... (15)

yt = β1 + β2t + εt (16)

Note the similarity of 10 and 16, apart from the nature of the error term, i.e. a Difference
Stationary Series can be written as a function of t, like a Trend Stationary Series , but with
a MA error term.

In finite samples a Trend Stationary Series can be approximated arbitrarily well by a
Difference Stationary Series , and vice versa. The finite sample distributions are very close
together and it can be hard to tell them apart.

A difference between them is that a shock to the system (∆ε) has a temporary effect upon
a Trend Series but a permanent effect upon a Difference Series. If we interpret ’shock’ as a
change in government policy, then we can see the importance of finding whether variables
are Difference Series or Trend Series.

A non-stationary series is said to be integrated, with the order of integration being the
number of times the series needs to be differenced before it becomes stationary. A stationary
series is integrated of order zero, I(0). For the random walk model, y I(1).

Most economic variables are I(0) or I(1). Interest rates are likely to be I(0), they are
not trended. Output, the price level, investment, etc. are likely to be I(1). Some variables
may be I(2). Transforming to logs may affect the order of integration.

2 Pairs Trading Model

1

2.1 Strategy

The investment strategy we aim at implementing is a market neutral long/short strategy.
This implies that we will try to find shares with similar betas, where we believe one stock

1 source: from Andrei Simonov, no longer available online
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2 PAIRS TRADING MODEL

will outperform the other one in the short term. By simultaneously taking both a long and
short position the beta of the pair equals zero and the performance generated equals alpha.

Needless to mention, is that the hard part of this strategy is to find market neutral
positions that will deviate in returns. To do this we can use a statistical tool developed by
Schroder Salomon Smith Barney (SSSB). The starting point of this strategy is that stocks
that have historically had the same trading patterns (i.e. constant price ratio) will have
so in the future as well. If there is a deviation from the historical mean, this creates a
trading opportunity, which can be exploited. Gains are earned when the price relationship is
restored. The historical calculations of betas and the millions of tests executed are done by
SSSB, but it is our job as portfolio managers to interpret the signals and execute the trades.

Summary:

� find two stocks prices of which have historically moved together,

� mean reversion in the ratio of the prices, correlation is not key

� Gains earned when the historical price relationship is restored

� Free resources invested in risk-free interest rate

2.2 Testing for the mean reversion

The challenge in this strategy is identifying stocks that tend to move together and therefore
make potential pairs. Our aim is to identify pairs of stocks with mean-reverting relative
prices. To find out if two stocks are mean-reverting the test conducted is the Dickey-Fuller
test of the log ratio of the pair. In the

A Dickey-Fuller test for determining stationarity in the log-ratio yt = log At − logBt of
share prices A and B

∆yt = µ + γyt−1 + εt (17)

In other words, we are regressing ∆yt on lagged values of yt.
the null hypothesis is that γ = 0, which means that the process is not mean reverting.
If the null hypothesis can be rejected on the 99% confidence level the price ratio is

following a weak stationary process and is thereby mean-reverting. Research has shown
that if the confidence level is relaxed, the pairs do not mean-revert good enough to generate
satisfactory returns. This implies that a very large number of regressions will be run to
identify the pairs. If you have 200 stocks, you will have to run 19 900 regressions, which
makes this quite computer-power and time consuming.

Schroder Salomon Smith Barney provide such calculation
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2 PAIRS TRADING MODEL

2.3 Screening Pairs

By conducting this procedure, a large number of pairs will be generated. The problem is
that all of them do not have the same or similar betas, which makes it difficult for us to stay
market neutral. Therefore a trading rule is introduced regarding the spread of betas within
a pair. The beta spread must be no larger than 0.2, in order for a trade to be executed. The
betas are measured on a two-year rolling window on daily data.

We now have mean-reverting pairs with a limited beta spread, but to further eliminate
the risk we also want to stay sector neutral. This implies that we only want to open a
position in a pair that is within the same sector. Due to the different volatility within
different sectors, we expect sectors showing high volatility to produce very few pairs, while
sectors with low volatility to generate more pairs. Another factor influencing the number
of pairs generated is the homogeneity of the sector. A sector like Commercial services is
expected to generate very few pairs, but Financials on the other hand should give many
trading opportunities. The reason why, is that companies within the Financial sector have
more homogenous operations and earnings.

2.4 Trading rules

The screening process described gives us a large set of pairs that are both market and sector
neutral, which can be used to take positions. This should not be done randomly, since timing
is an important issue. We will therefore introduce several trading execution rules.

All the calculations described above will be updated on a daily basis. However, we will not
have to do this ourselves, but we will be provided with updated numbers every day, showing
pairs that are likely mean revert within the next couple of weeks. In order to execute the
strategy we need a couple of trading rules to follow, i.e. to clarify when to open and when to
close a trade. Our basic rule will be to open a position when the ratio of two share prices hits
the 2 rolling standard deviation and close it when the ratio returns to the mean. However,
we do not want to open a position in a pair with a spread that is wide and getting wider.
This can partly be avoided by the following procedure: We actually want to open a position
when the price ratio deviates with more than two standard deviations from the 130 days
rolling mean. The position is not opened when the ratio breaks the two-standard-deviations
limit for the first time, but rather when it crosses it to revert to the mean again. You can
say that we have an open position when the pair is on its way back again (see the picture
below).

summary:

� Open position when the ratio hits the 2 standard deviation band for two consecutive
times
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2 PAIRS TRADING MODEL

Figure 1: Pairs Trading rules

� Close position when the ratio hits the mean

2.5 Risk control

Furthermore, there will be some additional rules to prevent us from loosing too much money
on one single trade. If the ratio develops in an unfavourable way, we will use a stop-loss
and close the position as we have lost 20% of the initial size of the position. Finally, we will
never keep a position for more that 50 days. On average, the mean reversion will occur in
approximately 35 days , and there is no reason to wait for a pair to revert fully, if there is
very little return to be earned. The potential return to be earned must always be higher
than the return earned on the benchmark or in the fixed income market. The maximum
holding period of a position is therefore set to 50 days. This should be enough time for the
pairs to revert, but also a short enough time not to loose time value.

The rules described are totally based on statistics and predetermined numbers. In ad-
dition, there is a possibility for us to make our own decisions. If we for example are aware
of fundamentals that are not taken into account in the calculations and that indicates that
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2 PAIRS TRADING MODEL

there will be no mean reversion for a specific pairs, we can of course avoid investing in such
pairs.

From the rules it can be concluded that we will open our last position no later than 50
days before the trading game ends. The last 50 days we will spend trying to close the trades
at the most optimal points of time.

Summary:

� Stop loss at 20% of position value

� Beta spread < 0.2

� Sector neutrality

� Maximum holding period < 50 trading days

� 10 equally weighted positions

2.6 Risks

As already mentioned, through this strategy we do almost totally avoid the systematic
market risk. The reason there is still some market risk exposure, is that a minor beta spread
is allowed for. In order to find a sufficient number of pairs, we have to accept this beta
spread, but the spread is so small that in practise the market risk we are exposed to is
ignorable. Also the industry risk is eliminated, since we are only investing in pairs belonging
to the same industry.

The main risk we are being exposed to is then the risk of stock specific events, that is
the risk of fundamental changes implying that the prices may never mean revert again, or
at least not within 50 days. In order to control for this risk we use the rules of stop-loss
and maximum holding period. This risk is further reduced through diversification, which is
obtained by simultaneously investing in several pairs. Initially we plan to open approximately
10 different positions. Finally, we do face the risk that the trading game does not last long
enough. It might be the case that our strategy is successful in the long run, but that a few
short run failures will ruin our overall excess return possibilities.

2.7 General Discussion on pairs trading

There are generally two types of pairs trading: statistical arbitrage convergence/divergence
trades, and fundamentally-driven valuation trades. In the former, the driving force for the
trade is a aberration in the long-term spread between the two securities, and to realize the
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mean-reversion back to the norm, you short one and go long the other. The trick is creating
a program to find the pairs, and for the relationship to hold.

The other form of pairs trading would be more fundamentally-driven variation, which is
the purvey of most market-neutral hedge funds: in essence they short the most overvalued
stock(s) and go long the undervalued stock(s). It’s normal to ”pair” up stocks by having
the same number per sector on the long and short side, although the traditional ”pairs”
aren’t used anymore. Pairs trading had originally been the domain of BD’s in the late 70’s,
early 80’s before it dissipated somewhat due to the bull market (who would want to be
market-neutral in a rampant bull market), and the impossibility of assigning ”pairs” due to
the morphing of traditional sectors and constituents. Most people don’t perform traditional
”pairs trading” anymore (i.e. the selection of two similar, but mispriced, stocks from the
same industry/sector), but perform a variation. Goetzmann et al wrote a paper on it a few
years back, but at the last firm I worked at, the research analyst ”pooh-paahed” it because
he couldn’t get the same results: he thinks Goetzmann [7] either waived commissions, or
worse, totally ignored slippage (i.e. always took the best price, not the realistically one).
Here’s the paper : source: forum http://www.wilmott.com

some quotations from this paper: ”take a longshort position when they diverge.” A
test requires that both of these steps must be parameterized in some way. How do you
identify ”stocks that move together?” Need they be in the same industry? Should they
only be liquid stocks? How far do they have to diverge before a position is put on? When
is a position unwound? We have made some straightforward choices about each of these
questions. We put positions on at a twostandard deviation spread, which might not always
cover transactions costs even when stock prices converge. Although it is tempting to try
potentially more profitable schemes, the danger in datasnooping refinements outweigh the
potential insights gained about the higher profits that could result from learning through
testing. As it stands now, datasnooping is a serious concern in our study. Pairs trading is
closely related to a widely studied subject in the academic literature mean reversion in stock
prices. 2 We consider the possibility that we have simply reformulated a test of the previously
documented tendency of stocks to revert towards their mean at certain horizons. To address
this issue, we develop a bootstrapping test based upon random pair choice. If pairstrading
profits were simply due to meanreversion, then we should find that randomly chosen pairs
generate profits, i.e. that buying losers and selling winners in general makes money. This
simple contrarian strategy is unprofitable over the period that we study, suggesting that mean
reversion is not the whole story. Although the effect we document is not merely an extension
of previously known anomalies, it is still not immune to the datasnooping argument. Indeed
we have explicitly ”snooped” the data to the extent that we are testing a strategy we know to
have been actively exploited by risk arbitrageurs. As a consequence we cannot be sure that
past trading profits under our simple strategies will continue in the future. This potential
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critique has another side, however. The fact that pairs trading is already wellknown risk-
arbitrage strategy means that we can simply test current practice rather than develop our
filterrule ad hoc.

3 Optimal Convergence Trading

From [10], Vladislav Kargin: ”Consider an investment in a mispriced asset. An investor can
expect that the mispricing will be eliminated in the future and play on the convergence of
the asset price to its true value. This play is risky because the convergence is not immediate
and its exact date is uncertain. Often both the expected benefit and leveraging his positions,
that is, by borrowing additional investment funds. An important question for the investor
is what is the optimal leverage policy. There are two intuitively appealing strategies in this
situation. The first one is to invest only if the mispricing exceeds a threshold and to keep the
position unchanged until the mispricing falls below another threshold (an (s, S) strategy).
For this strategy the relevant questions are what are the optimal thresholds and what are
the properties of the investment portfolio corresponding to this strategy. The second type
of strategy is to continuously change positions according to the level of mispricing. In this
case, we are interested in the optimal functional form of the dependence of the position on
the mispricing.”

See also discussion on optimal growth strategies in [9].

3.1 Optimal Trading in presence of mean reversion

In [14], Thompson define close form of trading threshold strategies in presence of Ornstein-
Uhlenbeck process and fixed transaction costs c.

if the price of the OU process is

dSt = σdBt − γStdt

The optimal strategy is a threshold strategy, ie to buy if St ≤ −b/γ and to sell St ≥ −b/γ
whre b satisfies:

2b− γc = 2e−b2/(γσ2
∫ b

0
eu2/(γσ2

du

with c fixed transaction cost.
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3.2 Continuous version of mean reversion : the Ornstein-Uhlenbeck
process

Suppose that the dynamic of the mis-pricing can be modelled by an AR(1) process. RA(1)
process is the discrete-time counterpart to the Ornstein-Uhlenbeck (OU) process in contin-
uous time.

dXt = β(α−Xt)dt + σdWt (18)

where Wt is a standard Wiener process, σ > 0 and α, β are constants. So the Xt process
drifts towards α.

OU process also has a normal transition density function given by :

f(Xt = x, t; Xt0 = x0, t0) =
1√

2πs2(t)
e
− (x−m(t))2

2s2(t) (19)

with mean
m(t) = α + (x0 − α)e−β(t−t0) (20)

with variance:

s(t) =
σ2

2β
[1− e−2β(t−t0)] (21)

If the process displays the property of mean reversion (β > 0), then as t0 → −∞ or
t − t0 → +∞, the marginal density of the process is invariant to time, ie OU process is
stationary in the strict sense.

See that there is a time decay term for the variance. For long time horizon the variance
of this process tends to σ2/2β. So, unlike the Brownian motion the variance is bounded (not
grows to infinite).

The equation describing dXt, the arithmetic Ornstein-Uhlenbeck equation presented
above is a continuous time version of the first-order autoregressive process, AR(1), in discrete
time. It is the limiting case (∆t tends to zero) of the AR(1) process:

xt − xt−1 = α(1− e−β) + (e−β − 1)xt − 1 + εt (22)

Where εt is normally distributed with mean zero and standard deviation

σε = 1− e−2β σ2

2β
(23)

In order to estimate the parameters of mean-reversion, run the regression:

xt − xt−1 = a + bxt−1 + εt (24)

Copyright 2004, Daniel Herlemont, email:dherlemont@yats.com YATS, All rights reserved, tel:+33 (0) 5 62 71 22 84 12

mailto:dherlemont@yats.com
http://www.yats.com


5 SPURIOUS REGRESSION

Calculate the parameters:

α = −a/b;

β = −ln(1 + b); (25)

σ = σε

√√√√ ln(1 + b)

(1 + b)2 − 1
(26)

The choice of the representation may depend on the data. For example, with daily data,
the AR discrete form is preferable, with high frequency data, it might preferable to use the
continuous time model.

One important distinction between random walk and stationary AR(1) processes: for the
last one all the shocks are transitory, whereas for random walk all shocks are permanent

Mean-Reversion Combined with Exponential Drift
It is possible combine Geometric Brownian Motion (exponential drift) with mean-reverting

model.
dX

X
=

(
α + η(X̂eαt −X)

)
dt + σdW (27)

4 Granger causality

According to Granger (1981), a times series, Xt, is said to cause another times series, Yt, if
present Y can be predicted better by using the value of X. The first step in the empirical
analysis is to examine the stationarity of the price series.

5 spurious regression

We now look at situations where the validity of the linear regression model is dubious -
where variables are trended or, more formally, non-stationary (not quite the same thing).
Regressions can be spurious when variables are n-s, i.e. you appear to have ’significant’
results when in fact you haven’t.

Nelson and Plosser ran an experiment. They generated two random variables (these are
random walks):

xt = xt−1 + εt

yt = yt−1 + νt (28)

where both errors have the classical properties and are independent. y and x should
therefore be independent.
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Regressing y on x, N & P got a ’significant’ result (at the 5% level) 75% of the time !!!
This is worrying! This is a spurious regression and it occurs because of the common trends
in y and x.

In these circumstances, the t and F statistics do not have the standard distributions.
Unfortunately, the problem generally gets worse with a larger sample size.

Such problems tend to occur with non-stationary variables and, unfortunately, many
economic variables are like this.

6 Unit Root Hypohtesis Testing

6.1 Dickey Fuller Tests

Formally, a stochastic process is stationary if all the roots of its characteristic equation are
¿1 in absolute value. Solving is the same as solving a difference equation.

Examples For
yt = ρyt−1 + εt (29)

we rewrite it as yt − ρyt−1 = εt or (1− ρL)yt = εt. Hence this will be stationary if the root
of the characteristic equation 1− ρL = 0 is > 1. The root is L = 1/ρ which is > 1 if ρ < 1.
This is the condition for stationarity.

Example II: yt = 2.8yt−1−1.6yt−2+εt The characteristic equation is 1−2.8L+1.6L2 = 0.
From this we get L = 1.25 and L = 0.5 are the roots. Both roots need to be greater than 1
in absolute value for stationarity. This does not apply here, so the process is non-stationary.

However, in practice we do not know the ρ values, we have to estimate them and then
test whether the roots are all > 1. We could estimate

yt = ρyt−1 + εt (30)

and test
H0 : ρ = 1 (non stationary) (31)

versus
H1 : ρ < 1 (stationary) (32)

using a t-test. Unfortunately, if ρ = 1, the estimate of r is biased downwards (even in large
samples) and also the t-distribution is inappropriate. Hence can’t use standard methods.

Instead we use the Dickey-Fuller test. Re-write 30

∆yt = ρ∗yt−1 + εt (33)
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6 UNIT ROOT HYPOHTESIS TESTING

where ρ∗ = ρ− 1.
Now we test

H0 : ρ∗ = 0 (non stationary) (34)

versus
H1 : ρ∗ < 0 (stationary) (35)

We cannot use critical values from the t-distribution, but D-F provide alternative tables
to use.

The D-F equation only tests for first order autocorrelation of y. If the order is higher, the
test is invalid and the D-F equation suffers from residual correlation. To counter this, add
lagged values of ∆y to the equation before testing. This gives the Augmented Dickey-Fuller
test. Sufficient lags should be added to ensure ε is white noise.

95% critical value for the augmented Dickey-Fuller statistic ADF = −3.0199
It is important to know the order of integration of non-stationary variables, so they may

be differenced before being included in a regression equation. The ADF test does this, but it
should be noted that it tends to have low power (i.e. it fails to reject H0 of non-stationarity
even when false) against the alternative of a stationary series with ρ near to 1.

6.2 Variants on the Dickey-Fuller Test

The Dickey-Fuller test requires that the us be uncorrelated. But suppose we have a model
like the following, where the first difference of Y is a stationary AR(p) process:

∆Yt =
p∑

i=1

di∆Yt−i + ut (36)

This model yields a model for Yt that is:

Yt = Yt−1 +
p∑

i=1

di∆Yt−i + ut (37)

If this is really what’s going on in our series, and we estimate a standard D.F. test:

Yt = ρ̂Yt−1 + ut (38)

the term
∑p

i=1 di∆Yt−i gets lumped into the errors ut. This induces an AR(p) structure
in the us, and the standard D.F. test statistics will be wrong. There are two ways of dealing
with this problem:

� Change the model (known as the augmented Dickey-Fuller test), or

� Change the test statistic (the Phillips-Perron test).

Copyright 2004, Daniel Herlemont, email:dherlemont@yats.com YATS, All rights reserved, tel:+33 (0) 5 62 71 22 84 15

mailto:dherlemont@yats.com
http://www.yats.com


6 UNIT ROOT HYPOHTESIS TESTING

6.3 The Augmented Dickey-Fuller Test

Rather than estimating the simple model, we can instead estimate:

∆Yt =
p∑

i=1

di∆Yt−i + ut (39)

and test whether or not ρ = 0. This is the Augmented Dickey-Fuller test. As with the
D-F test, we can include a constant/trend term to differentiate between a series with a unit
root and one with a deterministic trend.

Yt = α + βt + Yt−1 +
p∑

i=1

di∆Yt−i + ut (40)

The purpose of the lags of ∆Yt is to ensure that the us are white noise. This means that in
choosing p (the number of lagged ∆Yt−i terms to include), we have to consider two things:

1. Too few lags will leave autocorrelation in the errors, while

2. Too many lags will reduce the power of the test statistic.

This suggests, as a practical matter, a couple different ways to go about determining the
value of p:

1. Start with a large value of p, and reduce it if the values of di are insignificant at long
lags - This is generally a pretty good approach.

2. Start with a small value of p, and increase it if values of di are significant. This is a
less-good approach...

3. Estimate models with a range of values for p, and use an AIC/BIC/ F-test to determine
which is the best option. This is probably the best option of all...

A sidenote: AIC and BIC tests:
The Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC) are

general tests for model specification. They can be applied across a range of different areas,
and are like F-tests in that they allow for the testing of the relative power of nested models.
Each, however, does so by penalizing models which are overspecified (i.e., those with ”too
many” parameters). The AIC statistic is:

AIC(p) = log σ2
p +

2p

N
(41)
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6 UNIT ROOT HYPOHTESIS TESTING

where N is the number of observations in the regression, p is the number of parameters in
the model (including ρ and α), and σ2

p is the estimated σ2 for the regression including p total
parameters.

Similarly, the BIC statistic is calculated as:

BIC(p) = lnσ2
p +

2p log N

N
(42)

2.1 The KPSS test One potential problem with all the unit root tests so far described
is that they take a unit root as the null hypothesis. Kwiatkowski et. al. (1992) provide
an alternative test (which has come to be known as the KPSS test) for testing the null
of stationarity against the alternative of a unit root. This method considers models with
constant terms, and either with or without a deterministic trend term. Thus, the KPSS test
tests the null of a level- or trend-stationary process against the alternative of a unit root.
Formally, the KPSS test is equal to:

estimated error variance from the regression:

Yt = α + εt (43)

or:
Yt = α + βt + εt (44)

for the model with a trend. The practical advantages to the KPSS test are twofold. First,
they provide an alternative to the DF/ADF/PP tests in which the null hypothesis is sta-
tionarity. They are thus good ”complements” for the tests we have focused on so far. A
common strategy is to present results of both ADF/PP and KPSS tests, and show that the
results are consistent (e.g., that the former reject the null while the latter fails to do so, or
vice-versa). In cases where the two tests diverge (e.g., both fail to reject the null), the pos-
sibility of ”fractional integration” should be considered (e.g. Baillie 1989; Box-Steffensmeier
and Smith 1996, 1998).

General Issues in Unit Root Testing The Sims (1988) article I assigned is to point out
an issue with unit root econometrics in general: that classicists and Bayesians have very
different ideas about the value of knife-edge unit root tests like the ones here.1 Unlike clas-
sical statisticians, Bayesians regard (the ”true” value of the autocorrelation parameter) as a
random variable, and the goal to describe the distribution of this variable, making use of the
information contained in the data. One result of this is that, unlike the classical approach
(where the distribution is skewed), the Bayesian perspective allows testing using standard t
distributions. For more on why this is, see the discussion in Hamilton.

Another issue has to do with lag lengths. As in the case of ARIMA models, choosing
different lag lengths (e.g. in the ADF, PP and KPSS tests) can lead to different conclusions.
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6 UNIT ROOT HYPOHTESIS TESTING

This is an element of subjectivity that one needs to be aware of, and sensitivity testing across
numerous different lags is almost always a good idea. Finally, the whole reason we do unit
root tests will become clearer when we talk about cointegration in a few weeks.

6.4 Error Correction Model

Error Correction Model (ECM) is a step forward to determine how variables are linked
together.

1. Test the variables for order of integration. They must both (all) be I(d).
2. Estimate the parameters of the long run relationship. For example,

yt = α + βxt + et (45)

when yt and zt are cointegrated OLS is super consistent. That is, the rate of convergence
is T 2 rather than just T in Chebyshev’s inequality.

3. Denote the residuals from step 2 as and fit the model

∆êt = aêt + ηt (46)

The null and alternate hypotheses are

H0 : a = 0 => unit root = no cointegration

H1 : a 6= 0 => no unit root = cointegration (47)

Interpretation: Rejection of the Null implies the residual is stationary. If the residual
series is stationary then yt and xt must be cointegrated.

4. If you reject the null in step 3 then estimate the parameters of the Error Correction
Model

∆yt = α1 + αy(yt−1 − βxt−1 +
p∑

i=1

a
(i)
11∆yt−i +

q∑
i=1

a
(i)
12∆xt−i + eyt

∆xt = α2 + αx(yt−1 − βxt−1 +
p∑

i=1

a
(i)
21∆yt−i +

q∑
i=1

a
(i)
22∆xt−i + ext (48)

ECM is generalized to vectors:
The components of the vector xt = (x1t, x2t, .., xnt) are cointegrated of order (d,b),

denoted by xt CI(d,b), if
All components of xt are I(d) and There exists a vector β = (β1, β2, ..., βn) such that βxt

is I(d-b), where b ¿ 0. Note β is called the cointegrating vector.
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Points to remember:
To make β unique we must normalize on one of the coefficients.
All variables must be cointegrated of the same order. But, all variables of the same I(d)

are not necessarily cointegrated.
If xt is nx1 then there may be as many as n − 1 cointegrating vectors. The number of

cointegrating vectors is called the cointegrating rank.
An interpretation of cointegrated variables is that they share a common stochastic trend.
Given our notions of equilibrium in economics, we must conclude that the time paths

of cointegrated variables are determined in part by how far we are from equilibrium. That
is, if the variables wander from each other, there must be some way for them to get back
together. This is the notion of error correction.

Granger Representation theorem : ”Cointegration implies Error Correction Model (ECM).”

6.5 Discussions

6.5.1 Aaron at willmot.com

see original discussion link
Cointegration is covered in any good econometrics textbook. If you need more depth, Jo-

hansen’s Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford
University Press, 1995, is good. I do not recommend the original Engle and Granger paper
(1987).

Two series are said to be (linearly) ”cointegrated” if a (linear) combination of them is
stationary. The practical effect in Finance is we deal with asset prices directly instead of
asset returns.

For example, suppose I want to hold a market neutral investment in stock A (I think
stock A will outperform the general market, but I have no view about the direction of the
overall market). Traditionally, I buy 1, 000, 000ofstockAandshort1,000,000 times Beta of
the Index. Beta is derived from the covariance of returns between stock A and the Index.
Looking at things another way, I choose the portfolio of A and the Index that would have
had minimum variance of return in the past (over the estimation interval I used for Beta,
and subject to the constraint that the holding of stock A is $1,000,000).

A linear cointegration approach is to select the portfolio in the past that would have been
most stationary. There are a variety of ways of defining this (just as there are a variety of
ways of estimating Beta) but the simplest one is to select the portfolio with the minimum
extreme profit or loss over the interval. Note that the criterion is based on P&L of the
portfolio (price) not return (derivative of price).
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6 UNIT ROOT HYPOHTESIS TESTING

The key difference is correlation is extremely sensitive to small time deviations, cointe-
gration is not. Leads or lags in either price reaction or data measurement make correlations
useless. For example, suppose you shifted the data in the problem above, so your stock
quotes were one day earlier than you Index quotes. That would completely change the Beta,
probably sending it near zero, but would have little effect on the cointegration analysis.

Economists need cointegration because they deal with bad data, and their theories incor-
porate lots of unpredictable leads and lags. Finance, in theory, deals with perfect data with
no leads or lags. If you have really good data of execution prices, cointregation throws out
your most valuable (in a money-making sense) information. If you can really execute, you
don’t care if there’s only a few seconds in which to do so. But if you have bad data, either
in the sense that the time is not well-determined or that you may not be able to execute,
cointegration is much safer.

In a sense, people have been using cointegration for asset management as long as they
have been computing historical pro forma strategy returns and looking at the entire chart,
not just the mean and standard deviation (or other assumed-stationary parameters).

My feeling is cointegration is essential for risk management and hedging, but useless
for trading and pricing. Correlation is easy and well-understood. You can use it for risk-
management and hedging, but only if you backtest (which essentially checks the results
against a co-integration approach) to find the appropriate adjustments and estimation tech-
niques. Correlation is useful for trading and pricing (sorry Paul) but only if you allow
stochastic covariance matrices.

More formally, if a vector of time series is I(d) but a linear combination is integrated to
a lower order, the time series are said to be co-integrated.

6.5.2 Allen and Fildes

from : Econometric Forecasting http://www.lums2.lancs.ac.uk/MANSCI/Staff/EconometricForecasting.pdf
These are the arguments in favor of testing whether a series has a unit root:
(1) It gives information about the nature of the series that should be helpful in model

specification, particularly whether to express the variable in levels or in differences.
(2) For two or more variables to be cointegrated each must possess a unit root (or more

than one).
These are the arguments against testing:
(1) Unit root tests are fairly blunt tools. They have low power and often conclude that

a unit root is present when in fact it is not. Therefore, the finding that a variable does not
possess a unit root is a strong result. What is perhaps less well known is that many unit-root
tests suffer from size distortions. The actual chance of rejecting the null hypothesis of a unit
root, when it is true, is much higher than implied by the nominal significance level. These
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findings are based on 15 or more Monte Carlo studies, of which Schwert (1989) is the most
influential (Stock 1994, p. 2777).

(2) The testing strategy needed is quite complex.
In practice, a nonseasonal economic variable rarely has more than a single unit root and

is made stationary by taking first differences. Dickey and Fuller (1979) recognized that they
could test for the presence of a unit root by regressing the first-differenced series on lagged
values of the original series. If a unit root is present, the coefficient on the lagged values
should not differ significantly from zero. They also developed the special tables of critical
values needed for the test.

Since the publication of the original unit root test there has been an avalanche of mod-
ifications, alternatives, and comparisons. Banerjee, Dolado, Galbraith, and Hendry (1993,
chapter 4) give details of the more popular methods. The standard test today is the aug-
mented Dickey-Fuller test (ADF), in which lagged dependent variables are added to the
regression. This is intended to improve the properties of the disturbances, which the test
requires to be independent with constant variance, but adding too many lagged variables
weakens an already low-powered test.

Two problems must be solved to perform an ADF unit-root test: How many lagged
variables should be used? And should the series be modeled with a constant and deterministic
trend which, if present, distort the test statistics? Taking the second problem first, the ADF-
GLS test proposed by Elliott, Rothenberg, and Stock (1996) has a straightforward strategy
that is easy to implement and uses the same tables of critical values as the regular ADF test.

First, estimate the coefficients of an ordinary trend regression but use generalized least
squares rather than ordinary least squares. Form the detrended series, yd, given by yd

t =
yt−β0−β1t , where β0 and β1 are the coefficients just estimated. In the second stage, conduct
a unit root test with the standard ADF approach with no constant and no deterministic trend
but use yd instead of the original series.

To solve the problem of how many lagged variables to use, start with a fairly high lag
order, for example, eight lags for annual, 16 for quarterly, and 24 for monthly data. Test
successively shorter lags to find the length that gives the best compromise between keeping
the power of the test up and keeping the desirable properties of the disturbances. Monte
Carlo experiments reported by Stock (1994) and Elliott, Rothenberg and Stock (1996) favor
the Schwartz BIC over a likelihood-ratio criterion but both increased the power of the unit-
root test compared with using an arbitrarily fixed lag length. We suspect that this difference
has little consequence in practice. Cheung and Chinn (1997) give an example of using the
ADF-GLS test on US GNP.

Although the ADF-GLS test has so far been little used it does seem to have several
advantages over competing unit-root tests:

(1) It has a simple strategy that avoids the need for sequential testing starting with the
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most general form of ADF equation (as described by Dolado, Jenkinson, and Sosvilla-Rivero
(1990, p. 225)).

(2) It performs as well as or better than other unit-root tests. Monte Carlo studies
show that its size distortion (the difference between actual and nominal significance levels)
is almost as good as the ADF t-test (Elliott, Rothenberg & Stock 1996; Stock 1994) and
much less than the Phillips-Perron Z test (Schwert 1989). Also, the power of the ADF-
GLS statistic is often much greater than that of the ADF t-test, particularly in borderline
situations.

Elliott et. al (1996) showed that there is no uniformly most powerful test for this prob-
lem and derived tests that were approximately most powerful in the sense that they have
asymptotic power close to the envelope of most powerful tests for this problem.

7 Variance Ratio Test

� Based on the idea that, if a series is stationary, the variance of the series is not increasing
over time; while a series with a unit root has increasing variance.

� Intuition: Compare the variance of a subset of the data ”early” in the series with a
similarly-sized subset ”later” in the process. In the limit, for a stationary series, these
two values should be the same, while they will be different for an I(1) series. Thus,
the null hypothesis is stationarity, as for the KPSS test.

� There’s a good, brief discussion of these tests in Hamilton (p. 531-32). Other cites are
Cochrane (1988), Lo and McKinlay (1988), and Cecchetti and Lam (1991).

The variance ratio methodology tests the hypothesis that the variance of multi-period
returns increases linearly with time.

Hence if we calculate the variance σ2 of a series of returns every ∆t periods, the null
hypothesis suggests that sampling every k ∗∆t periods will lead to a variance kσ2:

V ariance(rk∆t) = kV ariance(r∆t) (49)

The variance ratio is significantly below one under mean reversion, and above one under
random walk:

= 1 under random walk

V R(k) =
V ariance(rk∆t)/k

V ariance(r∆t)
< 1 under mean reversion (50)

> 1 under mean aversion (51)
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More precisely, in the usual fixed k asymptotic treatment, under the null hypothesis that
the xt follow a random walk with possible drift, given by

xt = µ + xt−1 + εt (52)

where µ is areal number and εt is a sequence of εt is a sequence of zero mean independent
random variables, it is possible to show that

√
n(V R(k)− 1) → N(0, σ2

k) (53)

where σ2
k is some simple function of k (this is not the variance, due to overlapping observa-

tions, to make sample size sufficiently large for large k, and to correct the bias in variance
estimators)

note that this result is quite general, and stands under the simple hypothesis that εt

is a sequence of zero mean independent random variables. Any significant deviation from
7.1 means that εt are not independent random variables. This result extends to the case
where the εt are a martingale difference series with conditional heteroscedasticity though the
variance σ2

k has to be adjusted a little.
The use of the VR statistic can be advantageous when testing against several interesting

alternatives to the random walk model, most notably those hypotheses associated with mean
reversion. In fact, a number of authors (e.g., Lo and Mackinlay (1989), Faust (1992) and
Richardson and Smith (1991)) have found that the VR statistic has optimal power against
such alternatives.

Note that V R(k) can be writen as :

V R(k) =
V ariance(rkt)

kV ariance(rt)

=
V ariance(rt + rt+1 + .... + rt+k)

kV ariance(rt)
(54)

This expression can be expanded in :

V R(k) = 1 + 2
k−1∑
i=1

(1− i

k
)ρi (55)

where ρi is the i’th term in the autocorrelation function (ACF) of returns. This expression
holds asymptotically. Note that this expression can be used to calculate the ACF at various
lags. For example, for k = 2

V R(2) = 1 + ρ1 (56)

Note that if V R(2) is significantly under one,is the same as as a negative autocorrelation at
lag one : ρ1 < 0
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7.1 Implementation

Let xi i = 0, N be the series of increments (log of returns for example)

σ̂2
a =

1

N

∑
i=1

N(xi − xi−1 − µ̂)2

σ̂2
c =

1

M

∑
i=k

M(xi − xi−k − kµ̂)2 (57)

where xk is the log price at time k, N , the sample size, M = k(N − k + 1)(1 − k/N) and
µ̂ = (xN − x0)/N estimate of the mean. VR(k) is defined as σ̂2

a/σ̂
2
c

Testing for the null hypothesis is to test if is normally distributed. Nomality classical
tests can be applied, like z scores, Kolmogorov Smirnov test (or rather a Lillifors test).

8 Absolute Return Ratio Test

source: Groenendijky & Al., A Hybrid Joint Moment Ratio Test for Financial Time Series
see [?] If one augments the martingale assumption for financial asset prices with the condi-
tion that the martingale differences have constant (conditional) variance, it follows that the
variance of asset returns is directly proportional to the holding period. This property has
been used to construct formal testing procedures for the martingale hypothesis, known as
variance ratio tests. Variance ratio tests are especially good at detecting linear dependence
in the returns. While the variance ratio statistic describes one aspect of asset returns, the
idea behind this statistic can be generalized to provide a more complete characterization of
asset return data. We focus on using a combination of the variance ratio statistic and the
first absolute moment ratio statistic.

The first absolute moment ratio statistic by itself is useful as a measure of linear depen-
dence if no higher order moments than the variance exist.

In combination with the variance ratio statistic it can be used to disentangle linear
dependence from other deviations of the standard assumption in finance of unconditionally
normally distributed returns. In particular, the absolute moment ratio statistic provides
information concerning the tail of the distribution and conditional heteroskedasticity.

By using lower order moments of asset returns in the construction of volatility ratios,
e.g., absolute returns, one relaxes the conditions on the number of moments that need to
exist for standard asymptotic distribution theory to apply.

We formally prove that our general testing methodology can in principle even be applied
for return distributions that lie in the domain of attraction of a stable law (which includes the
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normal distribution as a special case). Stable laws, apart from the normal distribution, have
infinite variance, such that our approach is applicable outside the finite-variance paradigm.

Since in empirical work there often exists considerable controversy about the precise
nature of the asset return.

The first absolute moment has been used before as a measure of volatility,
Muller et al. observe a regularity in the absolute moment estimates which is not in line

with the presumption of i.i.d. normal innovations; this regularity was labelled the scaling
law. In this paper we consider the ratios of these absolute moment estimates, we obtain their
statistical properties under various distributional assumptions, and we explain the observed
regularity behind the ‘scaling law’. In particular, we show why the deviations observed by
Muller et al. should not be carelessly interpreted as evidence against the efficient market
hypothesis. Furthermore, we show that the absolute moment ratio statistics contain much
more information than the scaling law. Especially, when the statistic is used in combination
with the variance ratio statistic, most of the characteristic features of asset returns come to
the fore. Specifically, we advocate the simultaneous use of volatility statistics based on first
(absolute returns) and second order moments (variances).

In such a way we construct a test which is not only suited to detect linear dependence in
asset returns, but also fat-tailedness and non-linear dependence, e.g., volatility clustering.

We analytically show why moment ratios based on absolute returns can be used to detect
fat-tailedness and volatility clustering, while standard variance ratios convey no information
in this respect.

Discriminating between the alternative phenomena is important, since they have different
implications for portfolio selection and risk management.

Throughout the paper, we rely on a convenient graphical representation of the statistics:
the moment ratio curves. The formal testing procedure we propose in this paper heavily
builds on the bootstrap. By performing a non-parametric bootstrap based on the empirical
returns, we construct uniform confidence intervals for the range of moment ratios considered.

Absolute returns exhibits the highest correlation (Rama Cont [4]).

9 Multi variate co-integration - Vector Error Correc-

tion Modelling

Among the general class of the multivariate ARIMA (AutoRegressive Integrated Moving
Average) model, the Vector Autoregressive (VAR) model turns out to be particularly con-
venient for empirical work. Although there are important reasons to allow also for moving
average errors (e.g. L. utkepohl 1991, 1999), the VAR model has become the dominant work
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horse in the analysis of multivariate time series. Furthermore, Engle and Granger (1987)
show that VAR model is an attractive starting point to study the long run relationship be-
tween time series that are stationary in first differences. Since Johansen’s (1988) seminal
paper, the co-integrated VAR model has become very popular in empirical macroeconomics.

see resources.

10 Resources

� [6], Engle and Granger seminal paper: ”Cointegration and Error-Correction: Repre-
sentation, Estimation and Testing”,

� ***** Explaining Cointegration Analysis: David F. Hendry and Katarina Juselius:
part I, cached part II, cached

� Carol Alexander is specialized in cointegration trading and index tracking, ”Cointegra-
tion and asset allocation: A new active hedge fund strategy” [2] includes a good intro
to cointegration, see also, http://www.bankingmm.com and related paper of Alexan-
der [1] ”Cointegration-based trading strategies: A new approach to enhanced index
tracking and statistical arbitrage”

� In ”Intraday Price Formation in US Equity Index Markets” [8], Joel Hasbrouck is
studying relationships between stocks and futures and ETF. including implementation
source codes, cached and presentation slides *****

� Chambers [3] This paper analyses the effects of sampling frequency on the properties
of spectral regression estimators of cointegrating parameters.

� ”Numerically Stable Cointegration Analysis” [5] is a practical impementation to es-
timate commen trends: Cointegration analysis involves the solution of a generalized
eigenproblem involving moment matrices and inverted moment matrices. These for-
mulae are unsuitable for actual computations because the condition numbers of the
resulting matrices are unnecessarily increased. Our note discusses how to use the
structure of the problem to achieve numerically stable computations, based on QR
and singular value decompositions.

� [11], a simple illustration of cointegration with a drunk man and his dog ... ****

� [13] Adrian Trapletti paper on intraday cointegration for forex.

� Common stochastic trends, cycles and sectoral fluctuations cached *****
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� johansen test critical values

� web cached This paper uses Reuters high-frequency exchange rate data to investigate
the contributions to the price discovery process by individual banks in the foreign ex-
change market.

� ”Intraday Lead-Lag Relationships Between the Futures, Options and Stock Market”, F.
de Jong and M.W.M. Donders. Includes interesting method to estimate cross corelation
whith asynchronous trades.

� Cointegration in Single Equations in lectures from Ronald Bewley

� Vector Error Correction Modeling from SAS online support.

� Variance ration testing: an other test for stationary aplication to stokc market indices,
cached random walk or mean reversion ..., cached On the Asymptotic Power of the
Variance Ratio Test, cached

� a general discussion on Econometric Forecasting and methods, by P. Geoffrey Allen
and Robert Fildes.

� a simple presentation of Dickey Fuler test in French, cached

� The R tseries package include Augmented DickeyFuller

� How to do a ’Regular’ Dickey-Fuller Test Using Excel cached

bibliography list from Petits Déjeuners de la Finance
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